Decision Information Meets Large Language Models: The Future of Explainable Operations Research
- URL: http://arxiv.org/abs/2502.09994v1
- Date: Fri, 14 Feb 2025 08:25:06 GMT
- Title: Decision Information Meets Large Language Models: The Future of Explainable Operations Research
- Authors: Yansen Zhang, Qingcan Kang, Wing Yin Yu, Hailei Gong, Xiaojin Fu, Xiongwei Han, Tao Zhong, Chen Ma,
- Abstract summary: We propose a comprehensive framework, Explainable Operations Research (EOR), emphasizing actionable and understandable explanations.
The core of EOR is the concept of Decision Information, which emerges from what-if analysis and focuses on evaluating the impact of complex constraints.
We introduce the first industrial benchmark to rigorously evaluate the effectiveness of explanations and analyses in Operations Research.
- Score: 8.228707152775964
- License:
- Abstract: Operations Research (OR) is vital for decision-making in many industries. While recent OR methods have seen significant improvements in automation and efficiency through integrating Large Language Models (LLMs), they still struggle to produce meaningful explanations. This lack of clarity raises concerns about transparency and trustworthiness in OR applications. To address these challenges, we propose a comprehensive framework, Explainable Operations Research (EOR), emphasizing actionable and understandable explanations accompanying optimization. The core of EOR is the concept of Decision Information, which emerges from what-if analysis and focuses on evaluating the impact of complex constraints (or parameters) changes on decision-making. Specifically, we utilize bipartite graphs to quantify the changes in the OR model and adopt LLMs to improve the explanation capabilities. Additionally, we introduce the first industrial benchmark to rigorously evaluate the effectiveness of explanations and analyses in OR, establishing a new standard for transparency and clarity in the field.
Related papers
- MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset [50.36095192314595]
Large Language Models (LLMs) function as conscious agents with generalizable reasoning capabilities.
This ability remains underexplored due to the complexity of modeling infinite possible changes in an event.
We introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step.
arXiv Detail & Related papers (2024-06-04T08:35:04Z) - Enhancing Decision-Making in Optimization through LLM-Assisted Inference: A Neural Networks Perspective [1.0420394952839245]
This paper explores the seamless integration of Generative AI (GenAI) and Evolutionary Algorithms (EAs)
Focusing on the transformative role of Large Language Models (LLMs), our study investigates the potential of LLM-Assisted Inference to automate and enhance decision-making processes.
arXiv Detail & Related papers (2024-05-12T08:22:53Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
Counterfactual explanations (CEs) have emerged as a viable solution for generating comprehensible explanations in XAI.
UFCE allows for the inclusion of user constraints to determine the smallest modifications in the subset of actionable features.
UFCE outperforms two well-known CE methods in terms of textitproximity, textitsparsity, and textitfeasibility.
arXiv Detail & Related papers (2024-02-26T20:09:44Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - DisCERN:Discovering Counterfactual Explanations using Relevance Features
from Neighbourhoods [1.9706200133168679]
DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.
We show how widely adopted feature relevance-based explainers can inform DisCERN to identify the minimum subset of "actionable features"
Our results demonstrate that DisCERN is an effective strategy to minimise actionable changes necessary to create good counterfactual explanations.
arXiv Detail & Related papers (2021-09-13T09:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.