論文の概要: ORI: O Routing Intelligence
- arxiv url: http://arxiv.org/abs/2502.10051v2
- Date: Mon, 17 Feb 2025 15:30:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:18.707342
- Title: ORI: O Routing Intelligence
- Title(参考訳): ORI: O Routing Intelligence
- Authors: Ahmad Shadid, Rahul Kumar, Mohit Mayank,
- Abstract要約: 単一大規模言語モデル(LLM)は、成長を続けるタスクの範囲に直面すると、しばしば不足する。
我々は,一組のLLMを利用する動的フレームワークであるORI(O Routing Intelligence)を提案する。
クエリをインテリジェントにルーティングすることで、ORIはMMLUで最大2.7ポイント、MuSRで1.8ポイントという最強の個別モデルを上回っている。
- 参考スコア(独自算出の注目度): 0.7493096930372414
- License:
- Abstract: Single large language models (LLMs) often fall short when faced with the ever-growing range of tasks, making a single-model approach insufficient. We address this challenge by proposing ORI (O Routing Intelligence), a dynamic framework that leverages a set of LLMs. By intelligently routing incoming queries to the most suitable model, ORI not only improves task-specific accuracy, but also maintains efficiency. Comprehensive evaluations across diverse benchmarks demonstrate consistent accuracy gains while controlling computational overhead. By intelligently routing queries, ORI outperforms the strongest individual models by up to 2.7 points on MMLU and 1.8 points on MuSR, ties the top performance on ARC, and on BBH. These results underscore the benefits of a multi-model strategy and demonstrate how ORI's adaptive architecture can more effectively handle diverse tasks, offering a scalable, high-performance solution for a system of multiple large language models.
- Abstract(参考訳): 単一大規模言語モデル (LLM) は、成長を続けるタスクの範囲に直面すると、しばしば不足し、単一のモデルアプローチが不十分になる。
我々は,一組のLLMを利用する動的フレームワークであるORI(O Routing Intelligence)を提案することで,この問題に対処する。
入ってくるクエリを最も適切なモデルにインテリジェントにルーティングすることで、ORIはタスク固有の精度を向上するだけでなく、効率も向上する。
様々なベンチマークによる総合的な評価は、計算オーバーヘッドを制御しながら一貫した精度の向上を示す。
クエリをインテリジェントにルーティングすることで、ORIはMMLUで最大2.7ポイント、MuSRで1.8ポイント、ARCで最高パフォーマンスとBBHで最高パフォーマンスを達成している。
これらの結果は、マルチモデル戦略の利点を強調し、ORIの適応アーキテクチャがより効果的に多様なタスクを処理し、複数の大規模言語モデルのシステムに対してスケーラブルで高性能なソリューションを提供することを実証する。
関連論文リスト
- MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な能力を示してきたが、しばしば空間的推論に苦しむ。
本稿では LLM と Answer Set Programming (ASP) の反復的フィードバックにより LLM の空間推論能力を高める新しいニューラルシンボリックフレームワークを提案する。
我々は、StepGameとSparQAという2つのベンチマークデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-11-27T18:04:05Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
本稿では,MLLMのマルチモーダル推論能力を高めるための選好最適化プロセスを提案する。
我々は,マルチモーダルCoT性能を向上する,MPO(Mixed Preference Optimization)と呼ばれるシンプルで効果的な手法を開発した。
我々のモデルであるInternVL2-8B-MPOは、MathVista上で67.0の精度を実現し、InternVL2-8Bを8.7ポイント上回り、10倍のInternVL2-76Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションで顕著なパフォーマンスのために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z) - Large Language Model Routing with Benchmark Datasets [40.42044096089315]
通常、単一のモデルがすべてのタスクやユースケースで最高の精度を達成することはない。
そこで我々は,この選択のための"ルータ"モデルを学習するために,ベンチマークデータセットを再利用した新しい定式化を提案する。
本稿では,この問題をバイナリ分類タスクの集合に還元できることを示す。
論文 参考訳(メタデータ) (2023-09-27T17:08:40Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。