論文の概要: RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
- arxiv url: http://arxiv.org/abs/2508.04903v1
- Date: Wed, 06 Aug 2025 21:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.656589
- Title: RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
- Title(参考訳): RCR-Router:構造化メモリを用いたマルチエージェントLLMシステムのための効率的な役割認識コンテキストルーティング
- Authors: Jun Liu, Zhenglun Kong, Changdi Yang, Fan Yang, Tianqi Li, Peiyan Dong, Joannah Nanjekye, Hao Tang, Geng Yuan, Wei Niu, Wenbin Zhang, Pu Zhao, Xue Lin, Dong Huang, Yanzhi Wang,
- Abstract要約: RCRは、マルチエージェント大言語モデル(LLM)システムのためのロールアウェアコンテキストルーティングフレームワークである。
役割とタスクステージに基づいて、各エージェントに対して意味的に関連するメモリサブセットを動的に選択する。
軽量スコアリングポリシは、メモリ選択をガイドし、エージェント出力を共有メモリストアに統合する。
- 参考スコア(独自算出の注目度): 57.449129198822476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
- Abstract(参考訳): マルチエージェント大規模言語モデル(LLM)システムは複雑な推論や協調的な意思決定タスクにおいて大きな可能性を示している。
しかし、既存のコーディネーションスキームの多くは、静的またはフルコンテキストのルーティング戦略に依存しており、トークンの過剰消費、冗長なメモリ露光、インタラクションラウンド間の適応性の制限につながっている。
RCR-Routerは,マルチエージェントLLMにおける効率的かつ適応的な協調を実現するために設計された,モジュール型かつロール対応のコンテキストルーティングフレームワークである。
我々の知る限りでは、これは厳格なトークン予算を守りながら、役割とタスクステージに基づいて各エージェントのセマンティック関連メモリサブセットを動的に選択する最初のルーティング手法である。
軽量スコアリングポリシは、メモリ選択をガイドし、エージェント出力を共有メモリストアに反復的に統合して、プログレッシブコンテキストの洗練を容易にする。
モデルの振る舞いをよりよく評価するために,標準QAの精度を超えたLCM生成の説明をキャプチャするアンサークオリティスコア(Answer Quality Score)メトリクスを提案する。
HotPotQA、MuSiQue、および2WikiMultihopという3つのマルチホップQAベンチマークの実験は、RCR-Routerが応答品質を改善したり維持したりしながらトークンの使用量を最大30%削減することを示した。
これらの結果は、拡張性のあるマルチエージェントLLMシステムにおいて、構造化メモリルーティングと出力認識評価の重要性を強調している。
関連論文リスト
- MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents [84.62985963113245]
我々は,長時間のマルチターンタスクに対して,エージェントが一定のメモリで動作可能な,エンドツーエンドの強化学習フレームワークMEM1を紹介する。
各ターンでMEM1は、メモリ統合と推論を共同でサポートするコンパクトな共有内部状態を更新する。
その結果,MEM1-7Bは16目的のマルチホップQAタスクにおいて,Qwen2.5-14B-Instructと比較してメモリ使用量を3.7倍削減し,3.5倍の性能向上を示す。
論文 参考訳(メタデータ) (2025-06-18T19:44:46Z) - Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning [12.878608250420832]
マルチLLMルーティングとアグリゲーションを逐次決定プロセスとして定式化する強化学習フレームワークである textbf Generalization-R1 を提案する。
学習を容易にするために,形式報酬と最終結果報酬と,性能とコストのバランスを最適化するための新たなコスト報酬からなる軽量なルールベース報酬を用いる。
論文 参考訳(メタデータ) (2025-06-10T17:56:45Z) - Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
大規模言語モデルの問題解決能力を高めるためには,多段階推論が不可欠であることが証明されている。
しかし、多くの推論ステップは比較的単純であり、より効率的な小規模言語モデルで処理できる。
異種LLM間の協調推論を可能にする新しいフレームワークであるR2-Reasonerを提案する。
論文 参考訳(メタデータ) (2025-06-06T09:18:56Z) - RadialRouter: Structured Representation for Efficient and Robust Large Language Models Routing [31.446419903916425]
Radialは、大規模言語モデルのルーティングのための新しいフレームワークである。
RadialFormerという名前のラジアル構造を持つ軽量なTransformerベースのバックボーンを使用して、クエリとLLMの関係を明確にする。
バランシングとコストファーストのシナリオでは、既存のルーティングメソッドの9.2%と5.8%を大きく上回っている。
論文 参考訳(メタデータ) (2025-06-04T12:16:41Z) - Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) は、知識集約タスクにおけるLarge Language Models (LLM) の性能を大幅に向上させる。
既存のルーティング手法はRAGシナリオで最適以下の性能を示すのに対し,外部文書はLLMのクエリ応答能力に動的に影響を及ぼす。
本稿では、文書埋め込みとRAG機能埋め込みを利用して知識表現シフトを捉えるパラメトリックなRAG対応ルーティング設計であるRAGを提案する。
論文 参考訳(メタデータ) (2025-05-29T03:44:56Z) - Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning [60.84901522792042]
Multimodal Retrieval-Augmented Generation (MRAG)は、マルチモーダル大言語モデル(MLLM)における幻覚の緩和を約束している。
進化する推論状態に基づいて知識をいつどこで取得するかを学習する新しいMRAGフレームワークであるR1を提案する。
R1-は多種多様なKBを適応的かつ効果的に利用でき、不要な検索を減らし、効率と精度を向上させる。
論文 参考訳(メタデータ) (2025-05-28T08:17:57Z) - Single LLM, Multiple Roles: A Unified Retrieval-Augmented Generation Framework Using Role-Specific Token Optimization [64.33914369424494]
RoleRAGは、ロール固有のトークン最適化を通じて効率的なマルチタスク処理を実現する統一的なRAGフレームワークである。
RoleRAGは6つのモジュールから構成され、それぞれがRAGプロセス内で特定のサブタスクを処理する。
クエリの分解を表すクエリグラフを導入し、分解状態に応じて動的に解決する。
論文 参考訳(メタデータ) (2025-05-21T12:25:12Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented Generation (RAG) は、外部の現在の知識を大規模言語モデルに組み込むために広く利用されている。
標準的なRAGパイプラインは、クエリ書き換え、文書検索、文書フィルタリング、回答生成など、いくつかのコンポーネントから構成される。
これらの課題を克服するため,RAGパイプラインを多エージェント協調作業として,各コンポーネントをRLエージェントとして扱うことを提案する。
論文 参考訳(メタデータ) (2025-01-25T14:24:50Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。