論文の概要: InfoPos: A ML-Assisted Solution Design Support Framework for Industrial Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2502.10331v1
- Date: Fri, 14 Feb 2025 17:43:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:53.794204
- Title: InfoPos: A ML-Assisted Solution Design Support Framework for Industrial Cyber-Physical Systems
- Title(参考訳): InfoPos: 産業用サイバー物理システムのためのML支援ソリューション設計支援フレームワーク
- Authors: Uraz Odyurt, Richard Loendersloot, Tiedo Tinga,
- Abstract要約: InfoPosフレームワークの最初のイテレーションを導入し、利用可能な位置を考慮したユースケースの配置を可能にします。
そのインプットによって、デザイナと開発者は最も効果的な対応する選択を明らかにすることができる。
産業用サイバー物理システムのための異常識別ユースケースであるデモ隊の結果は、異なるビルディングブロックの使用によって達成された影響を反映している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The variety of building blocks and algorithms incorporated in data-centric and ML-assisted solutions is high, contributing to two challenges: selection of most effective set and order of building blocks, as well as achieving such a selection with minimum cost. Considering that ML-assisted solution design is influenced by the extent of available data, as well as available knowledge of the target system, it is advantageous to be able to select matching building blocks. We introduce the first iteration of our InfoPos framework, allowing the placement of use-cases considering the available positions (levels), i.e., from poor to rich, of knowledge and data dimensions. With that input, designers and developers can reveal the most effective corresponding choice(s), streamlining the solution design process. The results from our demonstrator, an anomaly identification use-case for industrial Cyber-Physical Systems, reflects achieved effects upon the use of different building blocks throughout knowledge and data positions. The achieved ML model performance is considered as the indicator. Our data processing code and the composed data sets are publicly available.
- Abstract(参考訳): データ中心およびML支援ソリューションに組み込まれたさまざまなビルディングブロックとアルゴリズムは、最も効果的なセットの選択とビルディングブロックの順序の2つの課題に寄与すると同時に、そのような選択を最小コストで達成する。
ML支援型ソリューション設計は、利用可能なデータの範囲や対象システムの知識の影響を考慮し、一致したビルディングブロックを選択できることが有利である。
我々はInfoPosフレームワークの最初のイテレーションを紹介し、利用可能な位置(レベル)、すなわち知識とデータ次元の貧弱から豊かな位置を考慮に入れたユースケースの配置を可能にします。
このインプットによって、デザイナと開発者は最も効果的な対応する選択を明らかにし、ソリューション設計プロセスの合理化が可能になります。
産業用サイバー物理システムにおける異常識別ユースケースである実証実験の結果は、知識やデータ位置を通じて異なるビルディングブロックを使用することによって達成された影響を反映している。
得られたMLモデルの性能は指標と見なされる。
データ処理コードと合成データセットは公開されています。
関連論文リスト
- FlairGPT: Repurposing LLMs for Interior Designs [26.07841568311428]
大規模言語モデル (LLM) が内部設計に直接活用できるかどうかを検討する。
LLMを体系的に探索することにより、関連する制約とともにオブジェクトのリストを確実に生成できる。
この情報を設計レイアウトグラフに変換し、オフザシェルフ制約最適化設定を用いて解決する。
論文 参考訳(メタデータ) (2025-01-08T18:01:49Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
論文 参考訳(メタデータ) (2025-01-08T11:37:06Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
我々は,大規模言語モデル(LLM)を具体的意思決定のために評価することを目指している。
既存の評価は最終的な成功率にのみ依存する傾向がある。
本稿では,様々なタスクの形式化を支援する汎用インタフェース (Embodied Agent Interface) を提案する。
論文 参考訳(メタデータ) (2024-10-09T17:59:00Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation [16.836658183451764]
大規模言語モデル(LLM)は、ドメイン固有の膨大なデータをカプセル化することによって、ハードウェア設計プロセスの合理化を約束している。
既存の利用可能なハードウェアデータセットは、サイズ、複雑さ、詳細に制限されることが多い。
本稿では,多段階の詳細な記述と対応するコードサンプルを包含したMulti-Grained-Verilog(MG-Verilog)データセットを提案する。
論文 参考訳(メタデータ) (2024-07-02T03:21:24Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Data-centric Operational Design Domain Characterization for Machine
Learning-based Aeronautical Products [4.8461049669050915]
機械学習(ML)に基づく航空製品のための操作設計ドメイン(ODD)の厳密な特徴付けを初めて与える。
我々は,ODDを定義するパラメータを明示的にキャプチャできる次元と,MLベースのアプリケーションが操作中に遭遇する可能性のあるデータの分類を提案する。
論文 参考訳(メタデータ) (2023-07-15T02:08:33Z) - AVIS: Autonomous Visual Information Seeking with Large Language Model
Agent [123.75169211547149]
本稿では,視覚的質問応答フレームワークAVISを提案する。
本手法は,LLM(Large Language Model)を利用して外部ツールの利用を動的に強化する。
AVIS は Infoseek や OK-VQA などの知識集約型視覚質問応答ベンチマークの最先端結果を達成する。
論文 参考訳(メタデータ) (2023-06-13T20:50:22Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。