論文の概要: Secure and Efficient Watermarking for Latent Diffusion Models in Model Distribution Scenarios
- arxiv url: http://arxiv.org/abs/2502.13345v1
- Date: Tue, 18 Feb 2025 23:55:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:39.057276
- Title: Secure and Efficient Watermarking for Latent Diffusion Models in Model Distribution Scenarios
- Title(参考訳): モデル分散シナリオにおける潜時拡散モデルの安全性と効率的な透かし
- Authors: Liangqi Lei, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu,
- Abstract要約: 新しいセキュリティメカニズムは、透かしの漏れと透かしの脱出を防ぐように設計されている。
モデル分散シナリオにおける多様な攻撃に対する堅牢性を高めるために,透かし分布に基づく検証戦略を提案する。
- 参考スコア(独自算出の注目度): 23.64920988914223
- License:
- Abstract: Latent diffusion models have exhibited considerable potential in generative tasks. Watermarking is considered to be an alternative to safeguard the copyright of generative models and prevent their misuse. However, in the context of model distribution scenarios, the accessibility of models to large scale of model users brings new challenges to the security, efficiency and robustness of existing watermark solutions. To address these issues, we propose a secure and efficient watermarking solution. A new security mechanism is designed to prevent watermark leakage and watermark escape, which considers watermark randomness and watermark-model association as two constraints for mandatory watermark injection. To reduce the time cost of training the security module, watermark injection and the security mechanism are decoupled, ensuring that fine-tuning VAE only accomplishes the security mechanism without the burden of learning watermark patterns. A watermark distribution-based verification strategy is proposed to enhance the robustness against diverse attacks in the model distribution scenarios. Experimental results prove that our watermarking consistently outperforms existing six baselines on effectiveness and robustness against ten image processing attacks and adversarial attacks, while enhancing security in the distribution scenarios.
- Abstract(参考訳): 潜在拡散モデルは、生成タスクにかなりの可能性を示した。
ウォーターマーキングは、生成モデルの著作権を保護し、それらの誤用を防ぐ代替手段であると考えられている。
しかし、モデル配布のシナリオでは、モデルの大規模ユーザへのアクセシビリティは、既存のウォーターマークソリューションのセキュリティ、効率、堅牢性に新たな課題をもたらします。
これらの問題に対処するため,安全かつ効率的な透かし手法を提案する。
新たなセキュリティメカニズムは、透かしの漏洩と透かしの脱出を防止するために設計されており、透かしのランダム性と透かし-モデル関連を必須透かし注入の2つの制約として検討している。
セキュリティモジュールのトレーニングの時間コストを削減するため、ウォーターマークインジェクションとセキュリティ機構を分離し、微調整のVAEがウォーターマークパターンの学習の負担を伴わずにセキュリティ機構のみを達成することを保証する。
モデル分散シナリオにおける多様な攻撃に対する堅牢性を高めるために,透かし分布に基づく検証戦略を提案する。
実験結果から,既存の6つのベースラインにおいて,画像処理10件の攻撃に対する有効性と堅牢性を常に上回りつつ,分散シナリオにおけるセキュリティの向上を図っている。
関連論文リスト
- Exploiting Watermark-Based Defense Mechanisms in Text-to-Image Diffusion Models for Unauthorized Data Usage [14.985938758090763]
安定拡散のようなテキストと画像の拡散モデルは、高品質な画像を生成するのに例外的な可能性を示している。
近年の研究では、これらのモデルのトレーニングに不正データを使用することが懸念されており、知的財産権侵害やプライバシー侵害につながる可能性がある。
本稿では、拡散過程を利用して保護された入力に対して制御された画像を生成するRATTANを提案する。
論文 参考訳(メタデータ) (2024-11-22T22:28:19Z) - Trigger-Based Fragile Model Watermarking for Image Transformation Networks [2.38776871944507]
脆弱な透かしでは、微妙な透かしが、改ざん時に透かしが壊れるように、物体に埋め込まれる。
画像変換・生成ネットワークのための新規なトリガ型フラクタモデル透かしシステムを提案する。
私たちのアプローチは、堅牢な透かしとは別として、さまざまなデータセットや攻撃に対して、モデルのソースと整合性を効果的に検証します。
論文 参考訳(メタデータ) (2024-09-28T19:34:55Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
機械学習モデルの知的財産権の保護は、AIセキュリティの急激な懸念として浮上している。
モデルウォーターマーキングは、機械学習モデルのオーナシップを保護するための強力なテクニックである。
本稿では,既存の手法の限界を克服するため,新しいウォーターマーク方式であるIn-distriion Watermark Embedding (IWE)を提案する。
論文 参考訳(メタデータ) (2024-09-10T00:55:21Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
拡散モデルは高品質な画像の生成において顕著な成功を収めた。
最近の研究は、SDモデルがポストホック法医学のための透かし付きコンテンツを出力できるようにすることを目的としている。
このシナリオにおける最初の実装としてtextttmethod を提案する。
論文 参考訳(メタデータ) (2024-05-18T01:25:47Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
ホワイトボックス攻撃に対するロバスト性を向上したGANのための新しいマルチビット・ボックスフリー透かし手法を提案する。
透かしは、GANトレーニング中に余分な透かし損失項を追加することで埋め込む。
その結果,透かしの存在が画像の品質に与える影響は無視できることがわかった。
論文 参考訳(メタデータ) (2023-10-25T18:38:10Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。