論文の概要: Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
- arxiv url: http://arxiv.org/abs/2502.10581v1
- Date: Fri, 14 Feb 2025 22:21:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:17:11.282689
- Title: Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
- Title(参考訳): ステップバイステップの検証が必要か? 理論的観点からのプロセススーパービジョンの再考
- Authors: Zeyu Jia, Alexander Rakhlin, Tengyang Xie,
- Abstract要約: 標準的なデータカバレッジの仮定では、強化学習はプロセスの監督よりも統計的に難しいものではない。
任意のポリシーの利点関数が最適なプロセス報酬モデルとして機能することを証明する。
- 参考スコア(独自算出の注目度): 59.61868506896214
- License:
- Abstract: As large language models have evolved, it has become crucial to distinguish between process supervision and outcome supervision -- two key reinforcement learning approaches to complex reasoning tasks. While process supervision offers intuitive advantages for long-term credit assignment, the precise relationship between these paradigms has remained an open question. Conventional wisdom suggests that outcome supervision is fundamentally more challenging due to the trajectory-level coverage problem, leading to significant investment in collecting fine-grained process supervision data. In this paper, we take steps towards resolving this debate. Our main theorem shows that, under standard data coverage assumptions, reinforcement learning through outcome supervision is no more statistically difficult than through process supervision, up to polynomial factors in horizon. At the core of this result lies the novel Change of Trajectory Measure Lemma -- a technical tool that bridges return-based trajectory measure and step-level distribution shift. Furthermore, for settings with access to a verifier or a rollout capability, we prove that any policy's advantage function can serve as an optimal process reward model, providing a direct connection between outcome and process supervision. These findings suggest that the empirically observed performance gap -- if any -- between outcome and process supervision likely stems from algorithmic limitations rather than inherent statistical difficulties, potentially transforming how we approach data collection and algorithm design for reinforcement learning.
- Abstract(参考訳): 大きな言語モデルが進化するにつれて、複雑な推論タスクに対する2つの重要な強化学習アプローチである、プロセスの監督と結果の監督を区別することが重要になっている。
プロセスの監督は長期的信用割り当てに対して直感的な優位性を提供するが、これらのパラダイム間の正確な関係は未解決の問題のままである。
従来の知恵は、トラジェクトリレベルのカバレッジ問題により、結果の監視が根本的に困難であることを示し、きめ細かいプロセスの監視データ収集に多大な投資をする。
本稿では,この議論を解決するための一歩を踏み出す。
我々の主定理は、標準的なデータカバレッジ仮定の下では、結果の監督による強化学習は、プロセスの監督によって、水平方向の多項式要素まで、統計的に困難であることを示している。
この結果の核心にあるのは、"Change of Trajectory Measure Lemma"という、リターンベースの軌道測度とステップレベルの分散シフトをブリッジする技術ツールだ。
さらに、検証器やロールアウト機能にアクセス可能な設定では、任意のポリシーの利点関数が最適なプロセス報酬モデルとして機能し、結果とプロセスの監督の直接的な接続を提供することができることを証明します。
これらの結果は、結果とプロセスの監督の間の経験的に観察されたパフォーマンスギャップが、本質的に統計上の困難というよりも、アルゴリズム的な制限に起因する可能性が高いことを示唆し、強化学習のためのデータ収集とアルゴリズム設計へのアプローチ方法を変える可能性がある。
関連論文リスト
- PSPO*: An Effective Process-supervised Policy Optimization for Reasoning Alignment [20.053439187190914]
我々は,報酬得点を決定するための推論ステップの数を考慮したPSPO-WRSを開発し,非線形報酬形成に最適化されたワイブル分布を利用する。
6つの数学的推論データセットの実験結果は、PSPO-WRSが現在の主流モデルより一貫して優れていることを示している。
論文 参考訳(メタデータ) (2024-11-18T16:03:51Z) - Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
論文 参考訳(メタデータ) (2024-10-02T18:17:54Z) - Rethinking State Disentanglement in Causal Reinforcement Learning [78.12976579620165]
因果性は、根底にある状態が識別可能性によって一意に回復できることを保証するための厳密な理論的支援を提供する。
我々はこの研究ラインを再考し、RL固有のコンテキストを取り入れることで、潜在状態に対する以前の識別可能性分析における不要な仮定を低減できることを示した。
本稿では, 従来手法の複雑な構造制約を, 遷移と報酬保存の2つの簡単な制約に置き換えることにより, 一般に部分的に観測可能なマルコフ決定過程(POMDP)を提案する。
論文 参考訳(メタデータ) (2024-08-24T06:49:13Z) - Process Variant Analysis Across Continuous Features: A Novel Framework [0.0]
本研究は, 業務プロセスにおけるケースの効果的セグメンテーションの課題に対処する。
本研究では,スライディングウインドウ手法と地球移動器の距離を併用して制御流の挙動変化を検出する手法を提案する。
オランダの保険会社UWVと共同で実生活事例研究を行い,その方法論を検証した。
論文 参考訳(メタデータ) (2024-05-06T16:10:13Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
ほとんどの実世界の強化学習アプリケーションでは、状態情報は部分的にしか観測できないため、マルコフ決定プロセスの仮定を破る。
我々は、部分的な観察から実践的な強化学習のためのコヒーレントな枠組みと抽出可能なアルゴリズムアプローチへと導く表現に基づく視点を開発する。
提案アルゴリズムは,様々なベンチマークで部分的な観察を行い,最先端の性能を超えることができることを実証的に実証した。
論文 参考訳(メタデータ) (2023-11-20T23:56:58Z) - Unsupervised approaches based on optimal transport and convex analysis
for inverse problems in imaging [6.202226277935329]
本稿では,画像逆問題の解法として理論的に原理化された教師なし学習手法について検討する。
最適な輸送と凸解析に根ざした手法に着目する。
本稿では,確率収束型学習最適化アルゴリズムに関する最近の研究の概要について述べる。
論文 参考訳(メタデータ) (2023-11-15T14:04:37Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。