Hyperdimensional Intelligent Sensing for Efficient Real-Time Audio Processing on Extreme Edge
- URL: http://arxiv.org/abs/2502.10718v1
- Date: Sat, 15 Feb 2025 08:19:20 GMT
- Title: Hyperdimensional Intelligent Sensing for Efficient Real-Time Audio Processing on Extreme Edge
- Authors: Sanggeon Yun, Ryozo Masukawa, Hanning Chen, SungHeon Jeong, Wenjun Huang, Arghavan Rezvani, Minhyoung Na, Yoshiki Yamaguchi, Mohsen Imani,
- Abstract summary: This paper proposes a groundbreaking approach with a near-sensor model tailored for intelligent audio-sensing frameworks.
Our model excels in low-energy, rapid inference, and online learning.
It is highly adaptable for efficient ASIC design implementation, offering superior energy efficiency.
- Score: 4.705504163848239
- License:
- Abstract: The escalating challenges of managing vast sensor-generated data, particularly in audio applications, necessitate innovative solutions. Current systems face significant computational and storage demands, especially in real-time applications like gunshot detection systems (GSDS), and the proliferation of edge sensors exacerbates these issues. This paper proposes a groundbreaking approach with a near-sensor model tailored for intelligent audio-sensing frameworks. Utilizing a Fast Fourier Transform (FFT) module, convolutional neural network (CNN) layers, and HyperDimensional Computing (HDC), our model excels in low-energy, rapid inference, and online learning. It is highly adaptable for efficient ASIC design implementation, offering superior energy efficiency compared to conventional embedded CPUs or GPUs, and is compatible with the trend of shrinking microphone sensor sizes. Comprehensive evaluations at both software and hardware levels underscore the model's efficacy. Software assessments through detailed ROC curve analysis revealed a delicate balance between energy conservation and quality loss, achieving up to 82.1% energy savings with only 1.39% quality loss. Hardware evaluations highlight the model's commendable energy efficiency when implemented via ASIC design, especially with the Google Edge TPU, showcasing its superiority over prevalent embedded CPUs and GPUs.
Related papers
- Energy-Efficient Spiking Recurrent Neural Network for Gesture Recognition on Embedded GPUs [1.37621344207686]
This research explores the deployment of a spiking recurrent neural network (SRNN) with liquid time constant neurons for gesture recognition.
We focus on the energy efficiency and computational efficacy of NVIDIA Jetson Nano embedded GPU platforms.
arXiv Detail & Related papers (2024-08-23T10:50:29Z) - Deep Learning Models in Speech Recognition: Measuring GPU Energy Consumption, Impact of Noise and Model Quantization for Edge Deployment [0.0]
This study examines the effects of quantization, memory demands, and energy consumption on the performance of various ASR model inference on the NVIDIA Jetson Orin Nano.
We found that changing precision from fp32 to fp16 halves the energy consumption for audio transcription across different models, with minimal performance degradation.
arXiv Detail & Related papers (2024-05-02T05:09:07Z) - HyperSense: Hyperdimensional Intelligent Sensing for Energy-Efficient Sparse Data Processing [5.570372733437123]
HyperSense efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data.
Our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin.
arXiv Detail & Related papers (2024-01-04T01:12:33Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
Neural network and deep learning has been started to impact the present research paradigm.
DSP processors are incapable of performing neural network, activation function, convolutional neural network and generative adversarial network operations.
Different algorithms have been adapted to design a DSP processor compatible for fast performance in neural network, activation function, convolutional neural network and generative adversarial network.
arXiv Detail & Related papers (2021-06-06T13:23:06Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.