論文の概要: BASE-SQL: A powerful open source Text-To-SQL baseline approach
- arxiv url: http://arxiv.org/abs/2502.10739v1
- Date: Sat, 15 Feb 2025 09:23:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:12.861141
- Title: BASE-SQL: A powerful open source Text-To-SQL baseline approach
- Title(参考訳): BASE-SQL: 強力なオープンソースのText-to-SQLベースラインアプローチ
- Authors: Lei Sheng, Shuai-Shuai Xu, Wei Xie,
- Abstract要約: 本稿では,BASE-tuningと呼ばれる,オープンソースモデルファインチューニングを用いたパイプライン方式を提案する。
BASE-はオープンソースのQwen2.5-Coder-32B-Instructを使用しており、BIRD開発セットで67.47%、スパイダーテストセットで88.9%の精度を実現している。
- 参考スコア(独自算出の注目度): 2.325005809983534
- License:
- Abstract: The conversion of natural language into SQL language for querying databases (Text-to-SQL) has broad application prospects and has attracted widespread attention. At present, the mainstream Text-to-SQL methods are mainly divided into in-context learning (ICL) based methods and supervised fine-tuning (SFT) based methods. ICL-based methods can achieve relatively good results thanks to the use of the most advanced closed-source models. However, in real-world application scenarios, factors such as data privacy, SQL generation efficiency and cost need to be considered. SFT-based methods have certain advantages. At present, methods based on fine-tuning of open source models lack easy-to-implement and effective (cost-effective) baseline methods. We propose a pipeline-based method using open source model fine-tuning, referred to as BASE-SQL, which includes four components: Schema Linking, Candidate SQL Generate, SQL Revision and SQL Merge Revision. Experimental results show that BASE-SQL uses the open source model Qwen2.5-Coder-32B-Instruct, and achieves an accuracy of 67.47% on the BIRD development set and 88.9% on the Spider test set, which is significantly better than other methods using open source models, and even exceeds several methods using the GPT-4o closed-source model. At the same time, BASE-SQL is easy to implement and highly efficient (on average, only five calls to the large language model are required to generate SQL once). The code will be open sourced at https://github.com/CycloneBoy/base_sql.
- Abstract(参考訳): データベース(Text-to-SQL)を問合せするための自然言語からSQL言語への変換は、幅広いアプリケーションの見通しを持ち、広く注目を集めている。
現在、メインストリームのText-to-SQLメソッドは、主にICL(in-context learning)とSFT(directed fine-tuning)に分割されている。
ICLベースの手法は、最も高度なクローズドソースモデルを使用することで、比較的良好な結果が得られる。
しかし、現実のアプリケーションシナリオでは、データのプライバシ、SQL生成効率、コストといった要素を考慮する必要があります。
SFTベースの手法にはいくつかの利点がある。
現在、オープンソースモデルの微調整に基づく手法には、実装が容易で効果的な(費用対効果の高い)ベースライン手法が欠如している。
本稿では,BASE-SQLと呼ばれる,オープンソースのモデルファインチューニングを用いたパイプラインベースの手法を提案する。
実験の結果、BASE-SQLはオープンソースモデルQwen2.5-Coder-32B-Instructを使用し、BIRD開発セットで67.47%、スパイダーテストセットで88.9%の精度を実現している。
同時に、BASE-SQLは実装が容易で、非常に効率的な(SQLを生成するのに5つの大きな言語モデルへの呼び出ししか必要ありません)。
コードはhttps://github.com/CycloneBoy/base_sql.comでオープンソース化される。
関連論文リスト
- STaR-SQL: Self-Taught Reasoner for Text-to-SQL [20.719165038519744]
チェーンオブ思考」の理論的根拠は、複雑な推論タスクにおける大規模言語モデルの性能向上に有効であることが証明されている。
テキスト駆動のような構造化されたタスクにそのようなテクニックを適用することは、ほとんど探索されていない。
本稿では、クエリ生成を推論プロセスとして再編成する新しいアプローチである、テキスト駆動型セルフトレーサ(STaR-)を提案する。
挑戦的なスパイダーベンチマークの実験結果によると、STaR-はテキストからパフォーマンスを大幅に改善し、86.6%の精度を実現している。
これらの知見は、推論強化トレーニングの可能性を強調している。
論文 参考訳(メタデータ) (2025-02-19T08:58:44Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation [10.205010004198757]
テキスト・ツー・ジェネレーションは、非専門家が自然言語でデータベースと対話することを可能にする。
GPT-4のような大規模クローズドソースモデルの最近の進歩は、アクセシビリティ、プライバシ、レイテンシの課題を提示している。
我々は、小型で効率的でオープンソースのテキスト・ツー・ジェネレーション・モデルの開発に注力する。
論文 参考訳(メタデータ) (2024-10-16T18:03:24Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
オープンソースとクローズドソースの大規模言語モデル(LLM)の能力ギャップは、テキスト・トゥ・タスクにおいて依然として課題である。
より大規模で強力なモデルによって生成されたデータと、より小さく、不整合なモデルによって生成されたエラー情報データを組み合わせた合成データアプローチを導入する。
論文 参考訳(メタデータ) (2024-08-06T15:40:32Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL [1.734218686180302]
本稿では,精製実行モデルとハードネス・プロンプトに基づくテキスト・トゥ・エクセルの手法を提案する。
パフォーマンスを維持しながら、ストレージとトレーニングのコストを削減する。
スパイダーデータセットに関する我々の実験は、特に大規模なLMを用いて、82.6%の異常な精度(EX)を達成した。
論文 参考訳(メタデータ) (2024-06-13T14:04:34Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
テキストから効率のよいタスクをベースとした大規模データベースのための大規模なベンチマークであるBirdを紹介します。
データベースの値に重点を置いていると、汚いデータベースコンテンツに対する新たな課題が浮き彫りになる。
最も効果的なテキストから効率のよいモデルであるChatGPTでさえ、実行精度はわずか40.08%である。
論文 参考訳(メタデータ) (2023-05-04T19:02:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。