PDA: Generalizable Detection of AI-Generated Images via Post-hoc Distribution Alignment
- URL: http://arxiv.org/abs/2502.10803v1
- Date: Sat, 15 Feb 2025 13:55:34 GMT
- Title: PDA: Generalizable Detection of AI-Generated Images via Post-hoc Distribution Alignment
- Authors: Li Wang, Wenyu Chen, Zheng Li, Shanqing Guo,
- Abstract summary: Post-hoc Distribution Alignment (PDA) is a novel approach for the generalizable detection for AI-generated images.
Our work provides a flexible and effective solution for real-world fake image detection, advancing the generalization ability of detection systems.
- Score: 16.98090845687867
- License:
- Abstract: The rapid advancement of generative models has led to the proliferation of highly realistic AI-generated images, posing significant challenges for detection methods to generalize across diverse and evolving generative techniques. Existing approaches often fail to adapt to unknown models without costly retraining, limiting their practicability. To fill this gap, we propose Post-hoc Distribution Alignment (PDA), a novel approach for the generalizable detection for AI-generated images. The key idea is to use the known generative model to regenerate undifferentiated test images. This process aligns the distributions of the re-generated real images with the known fake images, enabling effective distinction from unknown fake images. PDA employs a two-step detection framework: 1) evaluating whether a test image aligns with the known fake distribution based on deep k-nearest neighbor (KNN) distance, and 2) re-generating test images using known generative models to create pseudo-fake images for further classification. This alignment strategy allows PDA to effectively detect fake images without relying on unseen data or requiring retraining. Extensive experiments demonstrate the superiority of PDA, achieving 96.73\% average accuracy across six state-of-the-art generative models, including GANs, diffusion models, and text-to-image models, and improving by 16.07\% over the best baseline. Through t-SNE visualizations and KNN distance analysis, we provide insights into PDA's effectiveness in separating real and fake images. Our work provides a flexible and effective solution for real-world fake image detection, advancing the generalization ability of detection systems.
Related papers
- Self-Supervised Learning for Detecting AI-Generated Faces as Anomalies [58.11545090128854]
We describe an anomaly detection method for AI-generated faces by leveraging self-supervised learning of camera-intrinsic and face-specific features purely from photographic face images.
The success of our method lies in designing a pretext task that trains a feature extractor to rank four ordinal exchangeable image file format (EXIF) tags and classify artificially manipulated face images.
arXiv Detail & Related papers (2025-01-04T06:23:24Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
We propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks.
The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images.
We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images.
arXiv Detail & Related papers (2024-12-08T11:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
arXiv Detail & Related papers (2020-04-22T09:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.