論文の概要: OMG: Opacity Matters in Material Modeling with Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2502.10988v1
- Date: Sun, 16 Feb 2025 04:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:57.378856
- Title: OMG: Opacity Matters in Material Modeling with Gaussian Splatting
- Title(参考訳): OMG:ガウスめっきによる材料モデリングにおける環境問題
- Authors: Silong Yong, Venkata Nagarjun Pudureddiyur Manivannan, Bernhard Kerbl, Zifu Wan, Simon Stepputtis, Katia Sycara, Yaqi Xie,
- Abstract要約: 逆レンダリングはコンピュータビジョンとグラフィックスにおける長年の問題である。
ニューラルレンダリングの最近の進歩は、フォトリアリスティックでプラウシブルな逆レンダリング結果を可能にする。
3D Gaussian Splattingの出現は、リアルタイムレンダリングの可能性を示すことによって、それを次のレベルへと引き上げた。
- 参考スコア(独自算出の注目度): 4.580002425879323
- License:
- Abstract: Decomposing geometry, materials and lighting from a set of images, namely inverse rendering, has been a long-standing problem in computer vision and graphics. Recent advances in neural rendering enable photo-realistic and plausible inverse rendering results. The emergence of 3D Gaussian Splatting has boosted it to the next level by showing real-time rendering potentials. An intuitive finding is that the models used for inverse rendering do not take into account the dependency of opacity w.r.t. material properties, namely cross section, as suggested by optics. Therefore, we develop a novel approach that adds this dependency to the modeling itself. Inspired by radiative transfer, we augment the opacity term by introducing a neural network that takes as input material properties to provide modeling of cross section and a physically correct activation function. The gradients for material properties are therefore not only from color but also from opacity, facilitating a constraint for their optimization. Therefore, the proposed method incorporates more accurate physical properties compared to previous works. We implement our method into 3 different baselines that use Gaussian Splatting for inverse rendering and achieve significant improvements universally in terms of novel view synthesis and material modeling.
- Abstract(参考訳): 画像の集合、すなわち逆レンダリングから幾何学、材料、照明を分解することは、コンピュータビジョンとグラフィックスにおいて長年の問題であった。
ニューラルレンダリングの最近の進歩は、フォトリアリスティックでプラウシブルな逆レンダリング結果を可能にする。
3D Gaussian Splattingの出現は、リアルタイムレンダリングの可能性を示すことによって、それを次のレベルへと引き上げた。
直感的な発見は、逆レンダリングに使用されるモデルは、光学によって示唆される不透明なw.r.t.材料特性、すなわち断面の依存性を考慮に入れないということである。
したがって、モデリング自体にこの依存性を追加する新しいアプローチを開発する。
放射能伝達にインスパイアされたニューラルネットワークは、入力材料特性を考慮し、断面のモデリングと物理的に正しいアクティベーション関数を提供することにより、不透明度項を増大させる。
したがって、材料特性の勾配は色だけでなく不透明度も考慮し、最適化の制約を緩和する。
そこで,本提案手法は従来よりも高精度な物理特性を取り入れている。
提案手法は,逆レンダリングにガウススプラッティングを用いた3つの異なるベースラインに実装し,新規なビュー合成とマテリアルモデリングの観点から,大幅な改善を実現している。
関連論文リスト
- DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models [83.28670336340608]
逆レンダリングとフォワードレンダリングの二重問題に対処するニューラルアプローチであるDiffusionRendererを導入する。
本モデルは,リライティング,素材編集,現実的なオブジェクト挿入など,単一のビデオ入力から現実的な応用を可能にする。
論文 参考訳(メタデータ) (2025-01-30T18:59:11Z) - Materialist: Physically Based Editing Using Single-Image Inverse Rendering [50.39048790589746]
本稿では、学習に基づくアプローチとプログレッシブな微分可能レンダリングを組み合わせた手法を提案する。
提案手法は,より現実的な光物質相互作用,正確な影,大域的な照明を実現する。
また,全シーン形状を必要とせず,効果的に機能する材料透過性編集手法を提案する。
論文 参考訳(メタデータ) (2025-01-07T11:52:01Z) - PBR-NeRF: Inverse Rendering with Physics-Based Neural Fields [49.6405458373509]
シーン形状,材料,照明を共同で推定できる逆レンダリング(IR)モデルを提案する。
本手法は, 材料推定を必要とする他の逆レンダリングおよび3次元再構成フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-12-12T19:00:21Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors [67.74705555889336]
本稿では,テクスチャと材料特性に先立って2Dを組み込んだ,従来の3次元逆レンダリングパイプラインであるMaterialFusionを紹介する。
本稿では,2次元拡散モデルであるStableMaterialについて述べる。
種々の照明条件下で, 合成および実物体の4つのデータセット上でのMaterialFusionの照度特性を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:59:06Z) - BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting [10.918133974256913]
本稿では、画像に基づく新規ビュー合成技術である双方向ガウスプリミティブについて述べる。
提案手法はガウススプラッティングフレームワークに光の内在分解を取り入れ,3次元物体のリアルタイムリライティングを可能にする。
論文 参考訳(メタデータ) (2024-08-23T21:04:40Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
本稿では,未知の静止照明条件下で撮影されたポーズ画像から対象物質を回収することを目的とする。
我々は、最適化プロセスの正規化のための生成モデルを用いて、その材料を事前に学習する。
実世界および合成データセットを用いた実験により,本手法が材料回収における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-04-17T17:45:08Z) - Inverse Rendering of Translucent Objects using Physical and Neural
Renderers [13.706425832518093]
本研究では,半透明物体の1対の撮像画像のみから3次元形状,空間的反射率,均質散乱パラメータ,環境照度を推定する逆モデルを提案する。
2つの再構成は微分可能であるため、パラメータ推定を補助するために再構成損失を計算することができる。
我々は117Kシーンからなる半透明物体の大規模合成データセットを構築した。
論文 参考訳(メタデータ) (2023-05-15T04:03:11Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。