論文の概要: GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization
- arxiv url: http://arxiv.org/abs/2312.05133v2
- Date: Thu, 15 Aug 2024 15:40:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 19:04:55.848265
- Title: GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization
- Title(参考訳): GIR:3次元ガウス逆レンダリング
- Authors: Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jian Zhang, Bin Zhou, Errui Ding, Jingdong Wang,
- Abstract要約: 本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
- 参考スコア(独自算出の注目度): 62.13932669494098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to effectively factorize the scene into material properties, light, and geometry. The key contributions lie in three-fold. We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision. We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport. To further enhance the illumination disentanglement, we represent a high-resolution environmental map with a learnable low-resolution map and a lightweight, fully convolutional network. Our method achieves state-of-the-art performance in both relighting and novel view synthesis tasks among the recently proposed inverse rendering methods while achieving real-time rendering. This substantiates our proposed method's efficacy and broad applicability, highlighting its potential as an influential tool in various real-time interactive graphics applications such as material editing and relighting. The code will be released at https://github.com/guduxiaolang/GIR.
- Abstract(参考訳): 本稿では,3次元ガウス表現を用いた3次元ガウス逆レンダリング(GIR)手法を提案する。
主な貢献は3倍です。
最短固有ベクトルを用いて各3次元ガウスの正規性を計算する。
我々は3次元ガウシアン毎に方向対応の放射光を格納し、多重バウンス光輸送を近似するために二次照明をアンタングルするために、効率的なボクセルベースの間接照明追跡方式を採用する。
照明のゆがみをさらに高めるため、学習可能な低解像度マップと軽量で完全な畳み込みネットワークを備えた高解像度環境マップを表現した。
提案手法は,最近提案した逆レンダリング手法の照準と新鮮ビュー合成の両タスクにおいて,リアルタイムレンダリングを実現しつつ,最先端の性能を実現する。
提案手法の有効性と適用性について検討し,素材編集やリライティングなどのリアルタイムインタラクティブグラフィックスアプリケーションにおいて,その可能性を強調した。
コードはhttps://github.com/guduxiaolang/GIRでリリースされる。
関連論文リスト
- GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - L3DG: Latent 3D Gaussian Diffusion [74.36431175937285]
L3DGは3次元ガウス拡散定式化による3次元ガウスの3次元モデリングのための最初のアプローチである。
我々は、部屋の大きさのシーンで効率的に操作するために、スパース畳み込みアーキテクチャーを用いている。
3Dガウス表現を利用することで、生成されたシーンを任意の視点からリアルタイムでレンダリングすることができる。
論文 参考訳(メタデータ) (2024-10-17T13:19:32Z) - BiGS: Bidirectional Gaussian Primitives for Relightable 3D Gaussian Splatting [10.918133974256913]
本稿では、画像に基づく新規ビュー合成技術である双方向ガウスプリミティブについて述べる。
提案手法はガウススプラッティングフレームワークに光の内在分解を取り入れ,3次元物体のリアルタイムリライティングを可能にする。
論文 参考訳(メタデータ) (2024-08-23T21:04:40Z) - Subsurface Scattering for 3D Gaussian Splatting [10.990813043493642]
散乱材料を用いた物体の3次元再構成とリライティングは、表面下の複雑な光輸送のために大きな課題となる。
本稿では,マルチビューOLAT(1光1つ)データを用いてオブジェクトの形状を最適にするためのフレームワークを提案する。
本手法は,インタラクティブな速度で素材編集,リライティング,新しいビュー合成を可能にする。
論文 参考訳(メタデータ) (2024-08-22T10:34:01Z) - PRTGaussian: Efficient Relighting Using 3D Gaussians with Precomputed Radiance Transfer [13.869132334647771]
PRTGaussianはリアルタイムに再生可能な新規ビュー合成法である。
マルチビューOLATデータにガウスアンを組み込むことで,リアルタイムで自由視点のリライトを可能にする。
論文 参考訳(メタデータ) (2024-08-10T20:57:38Z) - GS-Phong: Meta-Learned 3D Gaussians for Relightable Novel View Synthesis [63.5925701087252]
本稿では,3次元ガウス点の集合を用いて,点光で照らされたシーンを表現する手法を提案する。
Blinn-Phongモデルにインスパイアされた我々の手法は、シーンを周囲、拡散、および特異成分に分解する。
照明条件に依存しない幾何学的情報の分解を容易にするため,新しい二段階最適化に基づくメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-31T13:48:54Z) - Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing [21.498078188364566]
フォトリアリスティックなリライトを実現するために,新しい微分可能な点ベースレンダリングフレームワークを提案する。
提案したフレームワークは、メッシュベースのグラフィクスパイプラインを、編集、トレース、リライトを可能にするポイントベースのパイプラインで革新する可能性を示している。
論文 参考訳(メタデータ) (2023-11-27T18:07:58Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。