Collaborative Deterministic-Diffusion Model for Probabilistic Urban Spatiotemporal Prediction
- URL: http://arxiv.org/abs/2502.11013v2
- Date: Wed, 19 Feb 2025 06:27:18 GMT
- Title: Collaborative Deterministic-Diffusion Model for Probabilistic Urban Spatiotemporal Prediction
- Authors: Zhi Sheng, Yuan Yuan, Yudi Zhang, Depeng Jin, Yong Li,
- Abstract summary: We highlight the critical role of probabilistic prediction in capturing complexities inherent in data.
We propose CoST, which collaborates deterministic and probabilistic models to improve both predictive accuracy and the ability to handle uncertainty.
CoST significantly outperforms existing methods in both deterministic and probabilistic metrics, achieving a 20% improvement with low computational cost.
- Score: 21.530024142518887
- License:
- Abstract: Accurate prediction of urban spatiotemporal dynamics is essential for enhancing urban management and decision-making. Existing spatiotemporal prediction models are predominantly deterministic, focusing on primary spatiotemporal patterns. However, those dynamics are highly complex, exhibiting multi-modal distributions that are challenging for deterministic models to capture. In this paper, we highlight the critical role of probabilistic prediction in capturing the uncertainties and complexities inherent in spatiotemporal data. While mainstream probabilistic models can capture uncertainty, they struggle with accurately learning primary patterns and often suffer from computational inefficiency. To address these challenges, we propose CoST, which collaborates deterministic and probabilistic models to improve both predictive accuracy and the ability to handle uncertainty. To achieve this, we design a mean-residual decomposition framework, where the mean value is modeled by a deterministic model, and the residual variations are learned by a probabilistic model, specifically diffusion models. Moreover, we introduce a scale-aware diffusion process, which better accounts for spatially heterogeneous dynamics across different regions. Extensive experiments on eight real-world datasets demonstrate that CoST significantly outperforms existing methods in both deterministic and probabilistic metrics, achieving a 20% improvement with low computational cost. CoST bridges the gap between deterministic precision and probabilistic uncertainty, making a significant advancement in the field of urban spatiotemporal prediction.
Related papers
- Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
We introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators.
PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process.
arXiv Detail & Related papers (2025-02-18T14:42:11Z) - ProGen: Revisiting Probabilistic Spatial-Temporal Time Series Forecasting from a Continuous Generative Perspective Using Stochastic Differential Equations [18.64802090861607]
ProGen Pro provides a robust solution that effectively captures dependencies while managing uncertainty.
Our experiments on four benchmark traffic datasets demonstrate that ProGen Pro outperforms state-of-the-art deterministic probabilistic models.
arXiv Detail & Related papers (2024-11-02T14:37:30Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and
Adaptive Sampling [27.194900145235007]
We introduce HYPER, a general and expressive hybrid prediction framework.
By modeling traffic agents as a hybrid discrete-continuous system, our approach is capable of predicting discrete intent changes over time.
We train and validate our model on the Argoverse dataset, and demonstrate its effectiveness through comprehensive ablation studies and comparisons with state-of-the-art models.
arXiv Detail & Related papers (2021-10-05T20:20:10Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.