Towards Achieving Concept Completeness for Textual Concept Bottleneck Models
- URL: http://arxiv.org/abs/2502.11100v3
- Date: Wed, 28 May 2025 08:49:18 GMT
- Title: Towards Achieving Concept Completeness for Textual Concept Bottleneck Models
- Authors: Milan Bhan, Yann Choho, Pierre Moreau, Jean-Noel Vittaut, Nicolas Chesneau, Marie-Jeanne Lesot,
- Abstract summary: This paper proposes a novel TCBM generator building concept labels in a fully unsupervised manner using a small language model.<n>CT-CBM iteratively targets and adds important and identifiable concepts in the bottleneck layer to create a complete concept basis.<n>CT-CBM achieves striking results against competitors in terms of concept basis and concept detection accuracy.
- Score: 0.3694429692322631
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Textual Concept Bottleneck Models (TCBMs) are interpretable-by-design models for text classification that predict a set of salient concepts before making the final prediction. This paper proposes Complete Textual Concept Bottleneck Model (CT-CBM), a novel TCBM generator building concept labels in a fully unsupervised manner using a small language model, eliminating both the need for predefined human labeled concepts and LLM annotations. CT-CBM iteratively targets and adds important and identifiable concepts in the bottleneck layer to create a complete concept basis. CT-CBM achieves striking results against competitors in terms of concept basis completeness and concept detection accuracy, offering a promising solution to reliably enhance interpretability of NLP classifiers.
Related papers
- Interpretable Reward Modeling with Active Concept Bottlenecks [54.00085739303773]
We introduce Concept Bottleneck Reward Models (CB-RM), a reward modeling framework that enables interpretable preference learning.<n>Unlike standard RLHF methods that rely on opaque reward functions, CB-RM decomposes reward prediction into human-interpretable concepts.<n>We formalize an active learning strategy that dynamically acquires the most informative concept labels.
arXiv Detail & Related papers (2025-07-07T06:26:04Z) - Adaptive Test-Time Intervention for Concept Bottleneck Models [6.31833744906105]
Concept bottleneck models (CBM) aim to improve model interpretability by predicting human level "concepts"
We propose to use Fast Interpretable Greedy Sum-Trees (FIGS) to obtain Binary Distillation (BD)
FIGS-BD distills a binary-augmented concept-to-target portion of the CBM into an interpretable tree-based model.
arXiv Detail & Related papers (2025-03-09T19:03:48Z) - Zero-shot Concept Bottleneck Models [17.70684428339905]
Concept bottleneck models (CBMs) are inherently interpretable and intervenable neural network models.<n>We present textitzero-shot concept bottleneck models (Z-CBMs), which predict concepts and labels in a fully zero-shot manner without training neural networks.
arXiv Detail & Related papers (2025-02-13T07:11:07Z) - LLM Pretraining with Continuous Concepts [71.98047075145249]
Next token prediction has been the standard training objective used in large language model pretraining.
We propose Continuous Concept Mixing (CoCoMix), a novel pretraining framework that combines discrete next token prediction with continuous concepts.
arXiv Detail & Related papers (2025-02-12T16:00:11Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts.
We propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness.
Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs.
arXiv Detail & Related papers (2024-04-13T12:02:19Z) - On the Concept Trustworthiness in Concept Bottleneck Models [39.928868605678744]
Concept Bottleneck Models (CBMs) break down the reasoning process into the input-to-concept mapping and the concept-to-label prediction.
Despite the transparency of the concept-to-label prediction, the mapping from the input to the intermediate concept remains a black box.
A pioneering metric, referred to as concept trustworthiness score, is proposed to gauge whether the concepts are derived from relevant regions.
An enhanced CBM is introduced, enabling concept predictions to be made specifically from distinct parts of the feature map.
arXiv Detail & Related papers (2024-03-21T12:24:53Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Interpretable-by-Design Text Understanding with Iteratively Generated Concept Bottleneck [46.015128326688234]
Black-box deep neural networks excel in text classification, yet their application in high-stakes domains is hindered by their lack of interpretability.
We propose Text Bottleneck Models (TBM), an intrinsically interpretable text classification framework that offers both global and local explanations.
arXiv Detail & Related papers (2023-10-30T15:41:32Z) - Causal Unsupervised Semantic Segmentation [60.178274138753174]
Unsupervised semantic segmentation aims to achieve high-quality semantic grouping without human-labeled annotations.
We propose a novel framework, CAusal Unsupervised Semantic sEgmentation (CAUSE), which leverages insights from causal inference.
arXiv Detail & Related papers (2023-10-11T10:54:44Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
Concept-based models (CBMs) combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts.
We provide a clear definition of interpretability in terms of alignment between the model's representation and an underlying data generation process.
We introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment.
arXiv Detail & Related papers (2022-05-31T08:53:53Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
arXiv Detail & Related papers (2022-02-03T08:30:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.