論文の概要: Leveraging Conditional Mutual Information to Improve Large Language Model Fine-Tuning For Classification
- arxiv url: http://arxiv.org/abs/2502.11258v1
- Date: Sun, 16 Feb 2025 20:24:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:47.502109
- Title: Leveraging Conditional Mutual Information to Improve Large Language Model Fine-Tuning For Classification
- Title(参考訳): 条件付き相互情報を活用した大規模言語モデルの微調整による分類
- Authors: Thanushon Sivakaran, En-Hui Yang,
- Abstract要約: 本稿では,条件付き相互情報(CMI)の情報理論原理を大規模言語モデル(LLM)の微調整に適用する。
我々の研究は情報理論とLLM開発の間のギャップを埋め、ハイパフォーマンスな言語モデルを構築するための新たな洞察を提供する。
- 参考スコア(独自算出の注目度): 3.866047645663101
- License:
- Abstract: Although large language models (LLMs) have demonstrated remarkable capabilities in recent years, the potential of information theory (IT) to enhance LLM development remains underexplored. This paper introduces the information theoretic principle of Conditional Mutual Information (CMI) to LLM fine-tuning for classification tasks, exploring its promise in two main ways: minimizing CMI to improve a model's standalone performance and maximizing CMI to enhance knowledge distillation (KD) for more capable student models. To apply CMI in LLM fine-tuning, we adapt the recently proposed CMI-constrained deep learning framework, which was initially developed for image classification, with some modification. By minimizing CMI during LLM fine-tuning, we achieve superior performance gains on 6 of 8 GLUE classification tasks compared to BERT. Additionally, maximizing CMI during the KD process results in significant performance improvements in 6 of 8 GLUE classification tasks compared to DistilBERT. These findings demonstrate CMI's adaptability for optimizing both standalone LLMs and student models, showcasing its potential as a robust framework for advancing LLM fine-tuning. Our work bridges the gap between information theory and LLM development, offering new insights for building high-performing language models.
- Abstract(参考訳): 近年,大きな言語モデル (LLM) が注目されているが,LLM 開発を促進する情報理論 (IT) の可能性はいまだ検討されていない。
本稿では,CMIをモデルの性能向上のために最小化し,CMIを最大化し,より有能な学生モデルのための知識蒸留(KD)を強化するという2つの主要な方法で,LLMの細調整に,条件付き相互情報(CMI)の情報理論の原理を導入している。
LLMファインチューニングにCMIを適用するために,画像分類のために開発されたCMI制約付きディープラーニングフレームワークを,いくつかの修正を加えて適用した。
LLM微調整におけるCMIの最小化により,BERTと比較して,8つのGLUE分類タスクのうち6つの性能向上を実現した。
さらに、KDプロセス中のCMIの最大化は、DistilBERTと比較して8つのGLUE分類タスクのうち6つで大幅な性能改善をもたらす。
これらの結果から, CMI がスタンドアロン LLM モデルと学生モデルの両方を最適化するための適応性を示し, LLM の微調整を推し進めるための堅牢なフレームワークとしての可能性を示している。
我々の研究は情報理論とLLM開発の間のギャップを埋め、ハイパフォーマンスな言語モデルを構築するための新たな洞察を提供する。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoDは、小規模マルチモーダル言語モデルの効率的なトレーニングを可能にするために設計されたフレームワークである。
スパースミキサーアーキテクチャを言語モデルに統合することにより、s-MLLMのネットワーク構造を最適化する。
また,包括的知識移動を確保するために,先進的な知識移動戦略を提案する。
論文 参考訳(メタデータ) (2024-08-28T15:52:23Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs [11.572835837392867]
本研究はGPTA(Large Language Model assistance training framework)を導入し,プレフィックスプロンプトによる下流タスクモデルのトレーニングを強化する。
LLMのデータ露出を最小限にすることで、下流タスクモデルトレーニングにLLMを適用する際のセキュリティと法的課題に対処する。
論文 参考訳(メタデータ) (2024-03-29T23:04:04Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
データの増大はOOD性能を継続的に向上させることを示す。
また, CF拡張モデルのキャリブレーションが容易な場合, 重要度を割り当てる場合, エントロピーがはるかに低いことを示す。
論文 参考訳(メタデータ) (2023-09-14T16:16:40Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Augmenting Interpretable Models with LLMs during Training [73.40079895413861]
本稿では,効率よく解釈可能なモデルを構築するための拡張解釈モデル (Aug-imodels) を提案する。
Aug-imodel は、フィッティング時に LLM を使用するが、推論中に使用せず、完全な透明性を実現する。
自然言語処理におけるAug-imodelのインスタンス化について検討する: (i) Aug-GAM, (ii) Aug-Tree, (ii) LLM機能拡張による決定木の拡大。
論文 参考訳(メタデータ) (2022-09-23T18:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。