論文の概要: LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2408.15881v3
- Date: Wed, 23 Oct 2024 09:52:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 04:30:58.544341
- Title: LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation
- Title(参考訳): LLaVA-MoD: MoEナレッジ蒸留によるLLaVAタイニー製造
- Authors: Fangxun Shu, Yue Liao, Le Zhuo, Chenning Xu, Lei Zhang, Guanghao Zhang, Haonan Shi, Long Chen, Tao Zhong, Wanggui He, Siming Fu, Haoyuan Li, Bolin Li, Zhelun Yu, Si Liu, Hongsheng Li, Hao Jiang,
- Abstract要約: LLaVA-MoDは、小規模マルチモーダル言語モデルの効率的なトレーニングを可能にするために設計されたフレームワークである。
スパースミキサーアーキテクチャを言語モデルに統合することにより、s-MLLMのネットワーク構造を最適化する。
また,包括的知識移動を確保するために,先進的な知識移動戦略を提案する。
- 参考スコア(独自算出の注目度): 41.05687297326706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.
- Abstract(参考訳): LLaVA-MoDは,大規模MLLM(l-MLLM)の知識を抽出することで,小規模マルチモーダル言語モデルの効率的な訓練を可能にする新しいフレームワークである。
本手法はMLLM蒸留における2つの基本的な課題に対処する。
まず,スパース・ミックス・オブ・エキスパートズ(MoE)アーキテクチャを言語モデルに統合することにより,s-MLLMのネットワーク構造を最適化し,計算効率とモデル表現性のバランスをとる。
第2に,包括的知識移動を保証するための進歩的知識移動戦略を提案する。
この戦略は、学生モデルが教師ネットワークの理解をエミュレートできるように、出力分布間のKL(Kullback-Leibler)のばらつきを最小限に抑えるため、模擬蒸留から始まる。
次に,l-MLLMを参照モデルとして扱う上で鍵となるDPO(Direct Preference Optimization)による嗜好蒸留を導入する。
この段階において、s-MLLMの優良例と劣悪な例を区別する能力は、l-MLLMを超えて著しく向上し、特に幻覚ベンチマークにおいて、教師を超越したより良い学生に繋がる。
大規模な実験により、LLaVA-MoDは、活性化パラメータの最小数と計算コストを抑えながら、様々なマルチモーダルベンチマークで既存のモデルより優れていることが示された。
注目すべきは、LLaVA-MoDは2Bのアクティベートパラメータだけで、Qwen-VL-Chat-7Bを平均8.8%上回り、トレーニングデータのわずか0.3%、トレーニング可能なパラメータは23%である。
これらの結果は、LLaVA-MoDの教師モデルから包括的知識を効果的に抽出する能力を強調し、より効率的なMLLMの開発への道を開いた。
コードは、https://github.com/shufangxun/LLaVA-MoD.comで入手できる。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - $γ-$MoD: Exploring Mixture-of-Depth Adaptation for Multimodal Large Language Models [87.43596173378913]
我々は既存のMLLMに対して$gamma$-MoDという革新的な戦略を提案する。
$gamma$-MoD では、MLLM における MoD の展開を導くための新しい計量法が提案されている。
MLLMの計算空間を最大化する2つの新しい設計法を提案する。
論文 参考訳(メタデータ) (2024-10-17T17:59:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
本研究では,新しい効率的なモデル構造を提案するのではなく,スクラッチから小規模MLLMを訓練する。
本研究は, 知識蒸留プロセスにおける学習戦略, モデル選択, 蒸留アルゴリズムに関するものである。
異なるベンチマークと適切な戦略を評価することで、2.7Bの小型モデルでも7Bまたは13Bのパラメータを持つ大型モデルと同等に動作することができる。
論文 参考訳(メタデータ) (2024-07-28T06:10:47Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [27.930351465266515]
本稿では,LVLMのための簡易かつ効果的なトレーニング戦略であるMoE-Tuningを提案する。
MoE-LLaVAはMoEベースのスパースLVLMアーキテクチャであり、ルータを通じてトップkの専門家のみをユニークに活性化する。
様々な視覚的理解と物体幻覚のベンチマークにおいて,MoE-LLaVAの顕著な性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-01-29T08:13:40Z) - Mixed Distillation Helps Smaller Language Model Better Reasoning [27.934081882868902]
本稿では,大規模言語モデル (LLM) におけるプログラム・オブ・シント (PoT) とチェーン・オブ・シント (CoT) の強みを生かした混合蒸留 (MD) フレームワークを紹介する。
実験の結果, MDは, 様々なタスクにおいて, より小さなモデルのシングルパスとマルチパス推論能力を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-12-17T14:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。