Directional Transport in Rydberg Atom Arrays via Kinetic Constraints and Temporal Modulation
- URL: http://arxiv.org/abs/2502.11282v1
- Date: Sun, 16 Feb 2025 21:47:00 GMT
- Title: Directional Transport in Rydberg Atom Arrays via Kinetic Constraints and Temporal Modulation
- Authors: Yupeng Wang, Junjie Wang, Aishik Panja, Xinghan Wang, Qi-Yu Liang,
- Abstract summary: We propose an experimentally feasible scheme to achieve directional transport of excitations and entangled states in atomic arrays with unequal spacing.<n>By leveraging distance-dependent Rydberg-Rydberg interactions and temporally modulated laser detunings, our method directs excitation flow without requiring local addressing.
- Score: 4.96756379598144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an experimentally feasible scheme to achieve directional transport of Rydberg excitations and entangled states in atomic arrays with unequal spacings. By leveraging distance-dependent Rydberg-Rydberg interactions and temporally modulated laser detunings, our method directs excitation flow without requiring local addressing. Numerical simulations demonstrate robust and coherent transport under experimentally realistic conditions. Additionally, we show that this scheme enables controlled transport of Bell pairs and preserves entanglement during propagation. The approach provides a versatile platform for programmable directional transport, with potential applications in quantum simulation, entanglement distribution, and the design of scalable quantum processors and networks.
Related papers
- Distributing entanglement at the quantum speed limit in Rydberg chains [49.1574468325115]
We numerically study the transport of Rydberg excitations in chains of neutral atoms.<n>We realize an effective flip-flop interaction using off-resonant driving fields.
arXiv Detail & Related papers (2025-06-24T01:26:09Z) - Quantum-preserved transport of excitations in Rydberg-dressed atom arrays [10.200956633222297]
We propose a protocol for achieving quantum-preserved transport of excitations using an array of Rydberg-dressed atoms.
Our results highlight an easily-implemented scheme for studying the dynamics of spin systems using Rydberg atoms.
arXiv Detail & Related papers (2025-03-10T00:37:18Z) - Tailoring transport in quantum spin chains via disorder and collisions [41.94295877935867]
We investigate the interplay of disorder and space-time heterogeneous collisional noise in shaping the transport dynamics of anisotropic XXZ spin chain.
We find that space homogeneous collisions occurring at low rates favor the shaping of regions where the localization degree sets in the form of subsequent plateaus.
Our findings can be applied to design stroboscopic protocols where sequences of transport and localization can be tailored.
arXiv Detail & Related papers (2025-02-21T15:11:58Z) - Floquet engineering of interactions and entanglement in periodically driven Rydberg chains [0.0]
We introduce a new Floquet engineering technique for systems in the Rydberg blockade regime.
We show how our method can be used to engineer strong spin exchange, consistent with the blockade, in a one-dimensional chain.
In addition, we demonstrate that combining gapless excitations with Rydberg blockade can lead to dynamic generation of large-scale multi-partite entanglement.
arXiv Detail & Related papers (2024-08-05T18:01:01Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - A unified diagrammatic approach to quantum transport in few-level junctions for bosonic and fermionic reservoirs: Application to the quantum Rabi model [0.0]
We study steady-state transport across generic multi-level junctions coupled to bosonic or fermionic reservoirs.
Nontrivial transport features emerge as a result of the interplay between the qubit-oscillator detuning and coupling strength.
arXiv Detail & Related papers (2024-03-11T17:11:31Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Microscopic dynamics and an effective Landau-Zener transition in the
quasi-adiabatic preparation of spatially ordered states of Rydberg
excitations [0.0]
We study the adiabatic preparation of spatially-ordered Rydberg excitations of atoms in finite one-dimensional lattices by frequency-chirped laser pulses.
Our aims are to unravel the microscopic mechanism of the phase transition from the unexcited state of atoms to the antiferromagnetic-like state of Rydberg excitations.
arXiv Detail & Related papers (2021-11-29T14:32:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.