Statistical Query Hardness of Multiclass Linear Classification with Random Classification Noise
- URL: http://arxiv.org/abs/2502.11413v1
- Date: Mon, 17 Feb 2025 03:54:38 GMT
- Title: Statistical Query Hardness of Multiclass Linear Classification with Random Classification Noise
- Authors: Ilias Diakonikolas, Mingchen Ma, Lisheng Ren, Christos Tzamos,
- Abstract summary: We study the task of Multiclass Linear Classification (MLC) in the distribution-free PAC model with Random Classification Noise (RCN)
As our main contribution, we show that the complexity of MLC with RCN becomes drastically different in the presence of three or more labels.
- Score: 41.23222309589753
- License:
- Abstract: We study the task of Multiclass Linear Classification (MLC) in the distribution-free PAC model with Random Classification Noise (RCN). Specifically, the learner is given a set of labeled examples $(x, y)$, where $x$ is drawn from an unknown distribution on $R^d$ and the labels are generated by a multiclass linear classifier corrupted with RCN. That is, the label $y$ is flipped from $i$ to $j$ with probability $H_{ij}$ according to a known noise matrix $H$ with non-negative separation $\sigma: = \min_{i \neq j} H_{ii}-H_{ij}$. The goal is to compute a hypothesis with small 0-1 error. For the special case of two labels, prior work has given polynomial-time algorithms achieving the optimal error. Surprisingly, little is known about the complexity of this task even for three labels. As our main contribution, we show that the complexity of MLC with RCN becomes drastically different in the presence of three or more labels. Specifically, we prove super-polynomial Statistical Query (SQ) lower bounds for this problem. In more detail, even for three labels and constant separation, we give a super-polynomial lower bound on the complexity of any SQ algorithm achieving optimal error. For a larger number of labels and smaller separation, we show a super-polynomial SQ lower bound even for the weaker goal of achieving any constant factor approximation to the optimal loss or even beating the trivial hypothesis.
Related papers
- Bandit Multiclass List Classification [28.483435983018616]
We study the problem of multiclass list classification with (semi-)bandit feedback, where input examples are mapped into subsets of size $m$ of a collection of $K$ possible labels.
Our main result is for the $(varepsilon,delta)$-PAC variant of the problem for which we design an algorithm that returns an $varepsilon$-optimal hypothesis.
arXiv Detail & Related papers (2025-02-13T12:13:25Z) - SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More [37.208622097149714]
We give a new family of upper-time algorithms which can certify bounds on the maximum of $|M u|$.
Our certification algorithm makes essential use of the Sum-of-Squares hierarchy.
arXiv Detail & Related papers (2024-12-30T18:59:46Z) - Optimal level set estimation for non-parametric tournament and crowdsourcing problems [49.75262185577198]
Motivated by crowdsourcing, we consider a problem where we partially observe the correctness of the answers of $n$ experts on $d$ questions.
In this paper, we assume that the matrix $M$ containing the probability that expert $i$ answers correctly to question $j$ is bi-isotonic up to a permutation of it rows and columns.
We construct an efficient-time algorithm that turns out to be minimax optimal for this classification problem.
arXiv Detail & Related papers (2024-08-27T18:28:31Z) - Identification of Mixtures of Discrete Product Distributions in
Near-Optimal Sample and Time Complexity [6.812247730094931]
We show, for any $ngeq 2k-1$, how to achieve sample complexity and run-time complexity $(1/zeta)O(k)$.
We also extend the known lower bound of $eOmega(k)$ to match our upper bound across a broad range of $zeta$.
arXiv Detail & Related papers (2023-09-25T09:50:15Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise.
We show that there an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a SQ algorithm.
arXiv Detail & Related papers (2020-12-17T16:43:11Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - A Multiclass Classification Approach to Label Ranking [2.6905021039717987]
In multiclass classification, the goal is to learn how to predict a random label $Y$, valued in $mathcalY=1,; ldots,; K $ with $Kgeq 3$.
This article is devoted to the analysis of this statistical learning problem, halfway between multiclass classification and posterior probability estimation.
arXiv Detail & Related papers (2020-02-21T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.