論文の概要: Variable-frame CNNLSTM for Breast Nodule Classification using Ultrasound Videos
- arxiv url: http://arxiv.org/abs/2502.11481v1
- Date: Mon, 17 Feb 2025 06:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:12.051495
- Title: Variable-frame CNNLSTM for Breast Nodule Classification using Ultrasound Videos
- Title(参考訳): 超音波映像を用いた乳頭結節分類のための可変フレームCNNLSTM
- Authors: Xiangxiang Cui, Zhongyu Li, Xiayue Fan, Peng Huang, Ying Wang, Meng Yang, Shi Chang, Jihua Zhu,
- Abstract要約: 本研究では,CNNとLSTMに基づく新しい映像分類手法を提案する。
CNNが抽出した画像の特徴を1x512次元に減らし、LSTMトレーニングのための特徴ベクトルのソートと圧縮を行う。
実験により,我々の可変フレームCNNLSTM法は,すべての指標において,他の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 22.437678884189697
- License:
- Abstract: The intersection of medical imaging and artificial intelligence has become an important research direction in intelligent medical treatment, particularly in the analysis of medical images using deep learning for clinical diagnosis. Despite the advances, existing keyframe classification methods lack extraction of time series features, while ultrasonic video classification based on three-dimensional convolution requires uniform frame numbers across patients, resulting in poor feature extraction efficiency and model classification performance. This study proposes a novel video classification method based on CNN and LSTM, introducing NLP's long and short sentence processing scheme into video classification for the first time. The method reduces CNN-extracted image features to 1x512 dimension, followed by sorting and compressing feature vectors for LSTM training. Specifically, feature vectors are sorted by patient video frame numbers and populated with padding value 0 to form variable batches, with invalid padding values compressed before LSTM training to conserve computing resources. Experimental results demonstrate that our variable-frame CNNLSTM method outperforms other approaches across all metrics, showing improvements of 3-6% in F1 score and 1.5% in specificity compared to keyframe methods. The variable-frame CNNLSTM also achieves better accuracy and precision than equal-frame CNNLSTM. These findings validate the effectiveness of our approach in classifying variable-frame ultrasound videos and suggest potential applications in other medical imaging modalities.
- Abstract(参考訳): 医用画像と人工知能の交わりは、インテリジェント医療、特に深層学習による臨床診断の医療画像の解析において重要な研究方向となっている。
従来のキーフレーム分類法では時系列特徴の抽出は行わなかったが、3次元畳み込みに基づく超音波ビデオ分類では患者間で均一なフレーム番号が必要であり、特徴抽出効率が低下し、モデル分類性能が低下した。
本研究では,CNNとLSTMに基づく新しいビデオ分類手法を提案し,NLPの長文・短文処理方式を初めてビデオ分類に適用した。
この方法は,CNN抽出画像の特徴量を1x512次元に減らし,LSTM訓練のための特徴ベクトルのソートと圧縮を行う。
具体的には、機能ベクトルを患者ビデオフレーム番号でソートし、計算資源を保存するためのLSTMトレーニング前に、無効なパディング値が圧縮された可変バッチを生成するためにパディング値0を占有する。
実験の結果, 可変フレームCNNLSTM法は, キーフレーム法に比べてF1スコアが3~6%, 特異性が1.5%向上した。
可変フレーム CNNLSTM は等フレーム CNNLSTM よりも精度と精度がよい。
これらの結果から, 可変フレーム超音波映像の分類におけるアプローチの有効性が検証され, その他の医用画像の応用の可能性も示唆された。
関連論文リスト
- Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - A Light-weight CNN Model for Efficient Parkinson's Disease Diagnostics [1.382077805849933]
提案モデルは,時系列信号の特性を適応させるために,畳み込みニューラルネットワーク(CNN)から短期記憶(LSTM)へと変換される。
実験結果から,提案モデルでは,パラメータや操作がはるかに少ない複数の評価指標に対して,高品質な診断結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-02-02T09:49:07Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
本稿では,MRI画像を用いた統合失調症診断のための軽量3次元畳み込みニューラルネットワーク(CNN)フレームワークを提案する。
精度は92.22%、感度94.44%、特異度90%、精度90.43%、リコール94.44%、F1スコア92.39%、G平均92.19%である。
論文 参考訳(メタデータ) (2022-11-05T10:27:37Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
脳卒中患者の管理において臨床結果予測は重要な役割を担っている。
機械学習の観点から見ると、大きな課題のひとつは異種データを扱うことだ。
本稿では,長い短期記憶(CNN-LSTM)に基づくアンサンブルモデルを提案する。
論文 参考訳(メタデータ) (2022-05-11T14:46:01Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
多発性硬化症(Multiple Sclerosis、MS)は、中枢神経系の病変を引き起こす自己免疫性脱髄性疾患である。
今のところ、病変の分断には多要素自動バイオメディカルアプローチが多用されている。
著者らは1つのモダリティ(FLAIR画像)を用いてMS病変を正確に分類する方法を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:37:43Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - TransMIL: Transformer based Correlated Multiple Instance Learning for
Whole Slide Image Classication [38.58585442160062]
マルチプル・インスタンス・ラーニング(MIL)は、スライド画像全体(WSI)に基づく病理診断において、弱い教師付き分類を解決する強力なツールである。
我々は、相関MILと呼ばれる新しいフレームワークを提案し、収束の証明を提供した。
我々は3つの異なる計算病理問題に対する様々な実験を行い、最先端の手法と比較してより優れた性能と高速な収束を実現した。
論文 参考訳(メタデータ) (2021-06-02T02:57:54Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
RSNA頭蓋内出血検出のためのシステムについて紹介する。
提案システムは,畳み込みニューラルネットワーク(CNN)を用いた軽量深層ニューラルネットワークアーキテクチャに基づいている。
最終テストセットの重み付き平均ログ損失は0.04989で、合計1345名から上位30名(2%)にランクインした。
論文 参考訳(メタデータ) (2020-08-01T17:28:25Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。