論文の概要: UniGO: A Unified Graph Neural Network for Modeling Opinion Dynamics on Graphs
- arxiv url: http://arxiv.org/abs/2502.11519v1
- Date: Mon, 17 Feb 2025 07:40:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:28.045034
- Title: UniGO: A Unified Graph Neural Network for Modeling Opinion Dynamics on Graphs
- Title(参考訳): UniGO: グラフ上のオピニオンダイナミクスをモデル化する統一グラフニューラルネットワーク
- Authors: Hao Li, Hao Jiang, Yuke Zheng, Hao Sun, Wenying Gong,
- Abstract要約: 本稿では、異なる意見融合ルールを統合し、対応する合成データセットを生成するために、統一された意見力学モデルを構築する。
統一された意見力学の利点をフル活用するために、グラフ上での意見の進化をモデル化するフレームワークであるUniGOを紹介した。
UniGOは、グラフニューラルネットワークを通じて意見のダイナミクスを効率的にモデル化し、平衡現象を保ちながら過度な平滑化を緩和する。
- 参考スコア(独自算出の注目度): 12.887980453980393
- License:
- Abstract: Polarization and fragmentation in social media amplify user biases, making it increasingly important to understand the evolution of opinions. Opinion dynamics provide interpretability for studying opinion evolution, yet incorporating these insights into predictive models remains challenging. This challenge arises due to the inherent complexity of the diversity of opinion fusion rules and the difficulty in capturing equilibrium states while avoiding over-smoothing. This paper constructs a unified opinion dynamics model to integrate different opinion fusion rules and generates corresponding synthetic datasets. To fully leverage the advantages of unified opinion dynamics, we introduces UniGO, a framework for modeling opinion evolution on graphs. Using a coarsen-refine mechanism, UniGO efficiently models opinion dynamics through a graph neural network, mitigating over-smoothing while preserving equilibrium phenomena. UniGO leverages pretraining on synthetic datasets, which enhances its ability to generalize to real-world scenarios, providing a viable paradigm for applications of opinion dynamics. Experimental results on both synthetic and real-world datasets demonstrate UniGO's effectiveness in capturing complex opinion formation processes and predicting future evolution. The pretrained model also shows strong generalization capability, validating the benefits of using synthetic data to boost real-world performance.
- Abstract(参考訳): ソーシャルメディアにおける偏光と断片化は、ユーザのバイアスを増幅し、意見の進化を理解することがますます重要になる。
意見力学は意見の進化を研究するための解釈可能性を提供するが、これらの洞察を予測モデルに取り入れることは依然として困難である。
この課題は、意見融合規則の多様性の固有の複雑さと、過度な平滑化を避けながら平衡状態を取得することの難しさによって生じる。
本稿では、異なる意見融合ルールを統合し、対応する合成データセットを生成するために、統一された意見力学モデルを構築する。
統一された意見力学の利点をフル活用するために、グラフ上での意見の進化をモデル化するフレームワークであるUniGOを紹介した。
粗粒化機構を用いて、UniGOはグラフニューラルネットワークを通じて意見力学を効率的にモデル化し、平衡現象を保ちながら過度な平滑化を緩和する。
UniGOは、合成データセットの事前トレーニングを活用し、現実のシナリオに一般化する能力を高め、意見力学の応用のための実行可能なパラダイムを提供する。
合成と実世界の両方のデータセットの実験結果は、UniGOが複雑な意見形成過程を捕捉し、将来の進化を予測する上で有効であることを示す。
事前訓練されたモデルはまた、強力な一般化能力を示し、実世界のパフォーマンスを高めるために合成データを使用することの利点を検証する。
関連論文リスト
- WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
我々は、予測モデルの機能を階層に分類し、WorldSimBenchと呼ばれる2つの評価フレームワークを提案することにより、World Simulatorの評価の第一歩を踏み出す。
WorldSimBenchにはExplicit Perceptual EvaluationとImplicit Manipulative Evaluationが含まれている。
我々の総合的な評価は、ビデオ生成モデルのさらなる革新を促進する重要な洞察を与え、World Simulatorsをエンボディされた人工知能への重要な進歩と位置づけている。
論文 参考訳(メタデータ) (2024-10-23T17:56:11Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Skews in the Phenomenon Space Hinder Generalization in Text-to-Image Generation [59.138470433237615]
本稿では,関係学習用データセットの言語的スキューと視覚的スクリューの両方を定量化する統計指標を提案する。
系統的に制御されたメトリクスは、一般化性能を強く予測できることを示す。
この研究は、データの多様性やバランスを向上し、絶対的なサイズをスケールアップするための重要な方向を示します。
論文 参考訳(メタデータ) (2024-03-25T03:18:39Z) - Linear Opinion Dynamics Model with Higher-Order Interactions [17.413930396663833]
グラフ上の意見ダイナミクスをハイパーグラフに拡張するために、人気のあるFriedkin-Johnsenモデルを拡張する。
我々は、高次相互作用が意見力学において重要な役割を果たすことを示した。
論文 参考訳(メタデータ) (2023-10-09T12:56:11Z) - Time Will Change Things: An Empirical Study on Dynamic Language
Understanding in Social Media Classification [5.075802830306718]
我々は、実験的にソーシャルメディアのNLUを動的に研究し、モデルが過去のデータに基づいてトレーニングされ、将来のテストが行われる。
自動エンコーディングと擬似ラベルが協調して、動的性の最良の堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2022-10-06T12:18:28Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
本稿では,現実の社会的トレースに,生成的,エージェントライクな意見力学モデルを適用するための推論機構を提案する。
本稿では,古典的エージェントに基づく意見力学モデルから,その生成的モデルへの変換による提案について紹介する。
われわれのモデルをRedditの現実世界のデータに適用して、バックファイア効果の影響に関する長年にわたる疑問を探る。
論文 参考訳(メタデータ) (2020-06-02T14:48:17Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
本稿では,関係構造を明示的に認識し,潜在相互作用グラフによる予測を行う汎用軌道予測フレームワークを提案する。
将来の行動の不確実性を考慮すると、モデルはマルチモーダルな予測仮説を提供するように設計されている。
トレーニング効率を向上し、収束を加速するだけでなく、モデル性能も向上する2段トレーニングパイプラインを導入する。
論文 参考訳(メタデータ) (2020-03-31T02:49:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。