UniGO: A Unified Graph Neural Network for Modeling Opinion Dynamics on Graphs
- URL: http://arxiv.org/abs/2502.11519v1
- Date: Mon, 17 Feb 2025 07:40:32 GMT
- Title: UniGO: A Unified Graph Neural Network for Modeling Opinion Dynamics on Graphs
- Authors: Hao Li, Hao Jiang, Yuke Zheng, Hao Sun, Wenying Gong,
- Abstract summary: This paper constructs a unified opinion dynamics model to integrate different opinion fusion rules and generates corresponding synthetic datasets.<n>To fully leverage the advantages of unified opinion dynamics, we introduces UniGO, a framework for modeling opinion evolution on graphs.<n>UniGO efficiently models opinion dynamics through a graph neural network, mitigating over-smoothing while preserving equilibrium phenomena.
- Score: 12.887980453980393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Polarization and fragmentation in social media amplify user biases, making it increasingly important to understand the evolution of opinions. Opinion dynamics provide interpretability for studying opinion evolution, yet incorporating these insights into predictive models remains challenging. This challenge arises due to the inherent complexity of the diversity of opinion fusion rules and the difficulty in capturing equilibrium states while avoiding over-smoothing. This paper constructs a unified opinion dynamics model to integrate different opinion fusion rules and generates corresponding synthetic datasets. To fully leverage the advantages of unified opinion dynamics, we introduces UniGO, a framework for modeling opinion evolution on graphs. Using a coarsen-refine mechanism, UniGO efficiently models opinion dynamics through a graph neural network, mitigating over-smoothing while preserving equilibrium phenomena. UniGO leverages pretraining on synthetic datasets, which enhances its ability to generalize to real-world scenarios, providing a viable paradigm for applications of opinion dynamics. Experimental results on both synthetic and real-world datasets demonstrate UniGO's effectiveness in capturing complex opinion formation processes and predicting future evolution. The pretrained model also shows strong generalization capability, validating the benefits of using synthetic data to boost real-world performance.
Related papers
- DynamiX: Large-Scale Dynamic Social Network Simulator [101.65679342680542]
DynamiX is a novel large-scale social network simulator dedicated to dynamic social network modeling.<n>For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances.<n>For ordinary users, we construct an inequality-oriented behavior decision-making module.
arXiv Detail & Related papers (2025-07-26T12:13:30Z) - Opinion Dynamics with Highly Oscillating Opinions [2.5862278972437998]
We study the ability of several Opinion Dynamics (OD) models to reproduce highly oscillating dynamics.<n>Our experiments show that the ATBCR, based on both rational and emotional mechanisms of opinion update, is the most accurate OD model for capturing highly oscillating opinions.
arXiv Detail & Related papers (2025-06-25T14:22:13Z) - Symbolic Foundation Regressor on Complex Networks [8.438758359789462]
We introduce a pre-trained symbolic foundation regressor that can compress complex data with numerous interacting variables.<n>Our model has been rigorously tested on non-network symbolic regression, symbolic regression on complex networks, and the inference of network dynamics across various domains.
arXiv Detail & Related papers (2025-05-28T01:53:29Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion [61.690978792873196]
Existing approaches rely on either autoregressive sequence models or diffusion models.
We propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models.
We validate the effectiveness of UniGenX on material and small molecule generation tasks.
arXiv Detail & Related papers (2025-03-09T16:43:07Z) - WorldSimBench: Towards Video Generation Models as World Simulators [79.69709361730865]
We classify the functionalities of predictive models into a hierarchy and take the first step in evaluating World Simulators by proposing a dual evaluation framework called WorldSimBench.
WorldSimBench includes Explicit Perceptual Evaluation and Implicit Manipulative Evaluation, encompassing human preference assessments from the visual perspective and action-level evaluations in embodied tasks.
Our comprehensive evaluation offers key insights that can drive further innovation in video generation models, positioning World Simulators as a pivotal advancement toward embodied artificial intelligence.
arXiv Detail & Related papers (2024-10-23T17:56:11Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Skews in the Phenomenon Space Hinder Generalization in Text-to-Image Generation [59.138470433237615]
We introduce statistical metrics that quantify both the linguistic and visual skew of a dataset for relational learning.
We show that systematically controlled metrics are strongly predictive of generalization performance.
This work informs an important direction towards quality-enhancing the data diversity or balance to scaling up the absolute size.
arXiv Detail & Related papers (2024-03-25T03:18:39Z) - Linear Opinion Dynamics Model with Higher-Order Interactions [17.413930396663833]
We extend the popular Friedkin-Johnsen model for opinion dynamics on graphs to hypergraphs.
We show that higher-order interactions play an important role in the opinion dynamics.
arXiv Detail & Related papers (2023-10-09T12:56:11Z) - Time Will Change Things: An Empirical Study on Dynamic Language
Understanding in Social Media Classification [5.075802830306718]
We empirically study social media NLU in a dynamic setup, where models are trained on the past data and test on the future.
We show that auto-encoding and pseudo-labeling collaboratively show the best robustness in dynamicity.
arXiv Detail & Related papers (2022-10-06T12:18:28Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model.
We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator.
arXiv Detail & Related papers (2022-05-27T07:39:28Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Learning Opinion Dynamics From Social Traces [25.161493874783584]
We propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces.
We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart.
We apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect.
arXiv Detail & Related papers (2020-06-02T14:48:17Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
We propose a generic trajectory forecasting framework with explicit relational structure recognition and prediction via latent interaction graphs.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal prediction hypotheses.
We introduce a double-stage training pipeline which not only improves training efficiency and accelerates convergence, but also enhances model performance.
arXiv Detail & Related papers (2020-03-31T02:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.