Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings
- URL: http://arxiv.org/abs/2502.11609v2
- Date: Sat, 14 Jun 2025 18:40:38 GMT
- Title: Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings
- Authors: Yanru Wu, Jianning Wang, Xiangyu Chen, Enming Zhang, Yang Tan, Hanbing Liu, Yang Li,
- Abstract summary: Continual learning (CL) has been a critical topic in contemporary deep neural network applications.<n>We propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance.
- Score: 8.814732457885022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning (CL) has been a critical topic in contemporary deep neural network applications, where higher levels of both forward and backward transfer are desirable for an effective CL performance. Existing CL strategies primarily focus on task models, either by regularizing model updates or by separating task-specific and shared components, while often overlooking the potential of leveraging inter-task relationships to enhance transfer. To address this gap, we propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance to learn task-conditioned model weights for CL tasks. Specifically, H-embedding is derived from an information theoretic measure of transferability and is designed to be online and easy to compute. Our method is also characterized by notable practicality, requiring only the storage of a low-dimensional task embedding per task and supporting efficient end-to-end training. Extensive evaluations on benchmarks including CIFAR-100, ImageNet-R, and DomainNet show that our framework performs prominently compared to various baseline and SOTA approaches, demonstrating strong potential in capturing and utilizing intrinsic task relationships. Our code is publicly available at https://anonymous.4open.science/r/H-embedding_guided_hypernet/.
Related papers
- Enhancing Cross-task Transfer of Large Language Models via Activation Steering [75.41750053623298]
Cross-task in-context learning offers a direct solution for transferring knowledge across tasks.<n>We investigate whether cross-task transfer can be achieved via latent space steering without parameter updates or input expansion.<n>We propose a novel Cross-task Activation Steering Transfer framework that enables effective transfer by manipulating the model's internal activation states.
arXiv Detail & Related papers (2025-07-17T15:47:22Z) - CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning [7.573297026523597]
We introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL)
CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$.
We analyze task overlap using conceptor-based representations to identify highly correlated tasks.
arXiv Detail & Related papers (2024-11-21T22:31:06Z) - Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - Dynamic Transformer Architecture for Continual Learning of Multimodal
Tasks [27.59758964060561]
Transformer neural networks are increasingly replacing prior architectures in a wide range of applications in different data modalities.
Continual learning (CL) emerges as a solution by facilitating the transfer of knowledge across tasks that arrive sequentially for an autonomously learning agent.
We propose a transformer-based CL framework focusing on learning tasks that involve both vision and language.
arXiv Detail & Related papers (2024-01-27T03:03:30Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Task-Attentive Transformer Architecture for Continual Learning of
Vision-and-Language Tasks Using Knowledge Distillation [18.345183818638475]
Continual learning (CL) can serve as a remedy through enabling knowledge-transfer across sequentially arriving tasks.
We develop a transformer-based CL architecture for learning bimodal vision-and-language tasks.
Our approach is scalable learning to a large number of tasks because it requires little memory and time overhead.
arXiv Detail & Related papers (2023-03-25T10:16:53Z) - Dense Network Expansion for Class Incremental Learning [61.00081795200547]
State-of-the-art approaches use a dynamic architecture based on network expansion (NE), in which a task expert is added per task.
A new NE method, dense network expansion (DNE), is proposed to achieve a better trade-off between accuracy and model complexity.
It outperforms the previous SOTA methods by a margin of 4% in terms of accuracy, with similar or even smaller model scale.
arXiv Detail & Related papers (2023-03-22T16:42:26Z) - Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning [60.501201259732625]
We introduce task-adaptive saliency for EFCIL and propose a new framework, which we call Task-Adaptive Saliency Supervision (TASS)
Our experiments demonstrate that our method can better preserve saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet, and ImageNet-Subset EFCIL benchmarks.
arXiv Detail & Related papers (2022-12-16T02:43:52Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - A Unified Meta-Learning Framework for Dynamic Transfer Learning [42.34180707803632]
We propose a generic meta-learning framework L2E for modeling the knowledge transferability on dynamic tasks.
L2E enjoys the following properties: (1) effective knowledge transferability across dynamic tasks; (2) fast adaptation to the new target task; (3) mitigation of catastrophic forgetting on historical target tasks; and (4) flexibility in incorporating any existing static transfer learning algorithms.
arXiv Detail & Related papers (2022-07-05T02:56:38Z) - Task-Agnostic Continual Reinforcement Learning: Gaining Insights and
Overcoming Challenges [27.474011433615317]
Continual learning (CL) enables the development of models and agents that learn from a sequence of tasks.
We investigate the factors that contribute to the performance differences between task-agnostic CL and multi-task (MTL) agents.
arXiv Detail & Related papers (2022-05-28T17:59:00Z) - A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong
Reinforcement Learning [11.076005074172516]
reinforcement learning algorithms can easily encounter catastrophic forgetting or interference when faced with lifelong streaming information.
We propose a scalable lifelong RL method that dynamically expands the network capacity to accommodate new knowledge.
We show that our method successfully facilitates scalable lifelong RL and outperforms relevant existing methods.
arXiv Detail & Related papers (2022-05-22T09:48:41Z) - Theoretical Understanding of the Information Flow on Continual Learning
Performance [2.741266294612776]
Continual learning (CL) is a setting in which an agent has to learn from an incoming stream of data sequentially.
We study CL performance's relationship with information flow in the network to answer the question "How can knowledge of information flow between layers be used to alleviate CF?"
Our analysis provides novel insights of information adaptation within the layers during the incremental task learning process.
arXiv Detail & Related papers (2022-04-26T00:35:58Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Efficient Crowd Counting via Structured Knowledge Transfer [122.30417437707759]
Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications.
We propose a novel Structured Knowledge Transfer framework to generate a lightweight but still highly effective student network.
Our models obtain at least 6.5$times$ speed-up on an Nvidia 1080 GPU and even achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-03-23T08:05:41Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z) - Automated Relational Meta-learning [95.02216511235191]
We propose an automated relational meta-learning framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph.
We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.
arXiv Detail & Related papers (2020-01-03T07:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.