論文の概要: Identifying Gender Stereotypes and Biases in Automated Translation from English to Italian using Similarity Networks
- arxiv url: http://arxiv.org/abs/2502.11611v1
- Date: Mon, 17 Feb 2025 09:55:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:58.961588
- Title: Identifying Gender Stereotypes and Biases in Automated Translation from English to Italian using Similarity Networks
- Title(参考訳): 類似性ネットワークを用いた英語からイタリア語への自動翻訳における性的ステレオタイプとビアーゼの同定
- Authors: Fatemeh Mohammadi, Marta Annamaria Tamborini, Paolo Ceravolo, Costanza Nardocci, Samira Maghool,
- Abstract要約: 本論文は,自動翻訳システムにおけるステレオタイプとバイアスを評価するために,言語学,法学,計算機科学の協力的な取り組みである。
ジェンダーインクルージョンを促進し,機械翻訳の客観性を向上させる手段として,ジェンダーニュートラル翻訳を提唱する。
- 参考スコア(独自算出の注目度): 0.25049267048783647
- License:
- Abstract: This paper is a collaborative effort between Linguistics, Law, and Computer Science to evaluate stereotypes and biases in automated translation systems. We advocate gender-neutral translation as a means to promote gender inclusion and improve the objectivity of machine translation. Our approach focuses on identifying gender bias in English-to-Italian translations. First, we define gender bias following human rights law and linguistics literature. Then we proceed by identifying gender-specific terms such as she/lei and he/lui as key elements. We then evaluate the cosine similarity between these target terms and others in the dataset to reveal the model's perception of semantic relations. Using numerical features, we effectively evaluate the intensity and direction of the bias. Our findings provide tangible insights for developing and training gender-neutral translation algorithms.
- Abstract(参考訳): 本論文は,自動翻訳システムにおけるステレオタイプとバイアスを評価するために,言語学,法学,計算機科学の協力的な取り組みである。
ジェンダーインクルージョンを促進し,機械翻訳の客観性を向上させる手段として,ジェンダーニュートラル翻訳を提唱する。
我々のアプローチは、英語とイタリア語の翻訳における性別バイアスの同定に重点を置いている。
まず、人権法と言語学の文献に基づいて性別バイアスを定義する。
次に、She/lei や he/lui といった性別固有の用語をキー要素として識別する。
次に、これらの目的語とデータセット内の他者とのコサイン類似性を評価し、モデルが意味的関係を知覚していることを明らかにする。
数値的特徴を用いて,バイアスの強度と方向を効果的に評価する。
本研究は,ジェンダーニュートラル翻訳アルゴリズムの開発と学習に有効な知見を提供する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
テキストコーパスにおけるジェンダーバイアスは、社会的不平等の永続性と増幅につながる可能性がある。
テキストコーパスにおけるジェンダー表現バイアスを計測する既存の手法は、主に英語で提案されている。
本稿では,スペインのコーパスにおけるジェンダー表現バイアスを定量的に測定する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:30:58Z) - Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation
with the GeNTE Corpus [15.388894407006852]
機械翻訳(MT)は、しばしば男性やステレオタイプ表現にデフォルトを与える。
本研究は、英語からイタリア語へのジェンダーニュートラル翻訳に重点を置くことで、包括的言語への需要が高まっていることに対処する。
論文 参考訳(メタデータ) (2023-10-08T21:44:00Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - Improving Gender Translation Accuracy with Filtered Self-Training [14.938401898546548]
機械翻訳システムは、性別が文脈から明確である場合でも、しばしば誤った性別を出力する。
性別不明瞭な入力に対してジェンダー翻訳精度を向上させるためのジェンダーフィルターによる自己訓練手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T18:05:29Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It [18.148675498274866]
ニューラル・マシン・トランスフォーメーションに明示的な単語レベルのジェンダー・インフレクション・タグを組み込む手法を提案する。
既存の単純なアプローチは、文中の複数のエンティティにジェンダー・フィーチャーを過度に一般化することができる。
また,英語のジェンダーニュートラルな実体の翻訳を,それに対応する言語規則で評価する拡張も提案する。
論文 参考訳(メタデータ) (2020-10-11T20:05:42Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
本稿では,性別ステレオタイプをサポートする検索エンジンの傾向を定量化するジェンダーステレオタイプ強化(GSR)尺度を提案する。
GSRは、表現上の害を定量化できる情報検索のための、最初の特別に調整された尺度である。
論文 参考訳(メタデータ) (2020-09-02T20:45:04Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。