論文の概要: Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It
- arxiv url: http://arxiv.org/abs/2010.05332v2
- Date: Thu, 10 Dec 2020 15:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 13:33:48.995840
- Title: Neural Machine Translation Doesn't Translate Gender Coreference Right
Unless You Make It
- Title(参考訳): ニューラル・マシーンの翻訳は、性別の基準を正しく翻訳しない
- Authors: Danielle Saunders and Rosie Sallis and Bill Byrne
- Abstract要約: ニューラル・マシン・トランスフォーメーションに明示的な単語レベルのジェンダー・インフレクション・タグを組み込む手法を提案する。
既存の単純なアプローチは、文中の複数のエンティティにジェンダー・フィーチャーを過度に一般化することができる。
また,英語のジェンダーニュートラルな実体の翻訳を,それに対応する言語規則で評価する拡張も提案する。
- 参考スコア(独自算出の注目度): 18.148675498274866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Machine Translation (NMT) has been shown to struggle with grammatical
gender that is dependent on the gender of human referents, which can cause
gender bias effects. Many existing approaches to this problem seek to control
gender inflection in the target language by explicitly or implicitly adding a
gender feature to the source sentence, usually at the sentence level.
In this paper we propose schemes for incorporating explicit word-level gender
inflection tags into NMT. We explore the potential of this gender-inflection
controlled translation when the gender feature can be determined from a human
reference, or when a test sentence can be automatically gender-tagged,
assessing on English-to-Spanish and English-to-German translation.
We find that simple existing approaches can over-generalize a gender-feature
to multiple entities in a sentence, and suggest effective alternatives in the
form of tagged coreference adaptation data. We also propose an extension to
assess translations of gender-neutral entities from English given a
corresponding linguistic convention, such as a non-binary inflection, in the
target language.
- Abstract(参考訳): ニューラル・マシーン・トランスレーション(NMT)は、人間の参照者の性別に依存する文法的な性別に苦しむことが示されている。
この問題に対する既存の多くのアプローチは、通常文レベルで、ソース文に明示的にまたは暗黙的に性別特徴を加えることによって、ターゲット言語における性差を制御しようとする。
本論文では,NMTに明示的な単語レベルの性差タグを組み込む手法を提案する。
性別特徴が人間の参照から決定できる場合や、英語とスペイン語と英語とドイツ語の翻訳に基づいて、テスト文を自動で性別タグ付けできる場合、この性差制御翻訳の可能性を検討する。
既存の単純なアプローチは、文中の複数のエンティティに男女関係を過度に一般化し、タグ付きコア参照適応データという形で効果的な代替案を提案する。
また,対象言語において,非バイナリ的帰納法のような対応する言語規則が与えられた英語からの性中立的実体の翻訳を評価する拡張も提案する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
論文 参考訳(メタデータ) (2024-07-12T22:10:16Z) - Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation
with the GeNTE Corpus [15.388894407006852]
機械翻訳(MT)は、しばしば男性やステレオタイプ表現にデフォルトを与える。
本研究は、英語からイタリア語へのジェンダーニュートラル翻訳に重点を置くことで、包括的言語への需要が高まっていることに対処する。
論文 参考訳(メタデータ) (2023-10-08T21:44:00Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Gender Lost In Translation: How Bridging The Gap Between Languages
Affects Gender Bias in Zero-Shot Multilingual Translation [12.376309678270275]
並列データが利用できない言語間のギャップを埋めることは、多言語NTTの性別バイアスに影響を与える。
本研究では, 言語に依存しない隠蔽表現が, ジェンダーの保存能力に及ぼす影響について検討した。
言語に依存しない表現は、ゼロショットモデルの男性バイアスを緩和し、ブリッジ言語におけるジェンダーインフレクションのレベルが増加し、話者関連性合意に対するより公平なジェンダー保存に関するゼロショット翻訳を超越することがわかった。
論文 参考訳(メタデータ) (2023-05-26T13:51:50Z) - Analyzing Gender Representation in Multilingual Models [59.21915055702203]
実践的なケーススタディとして,ジェンダーの区別の表現に焦点をあてる。
ジェンダーの概念が、異なる言語で共有された部分空間にエンコードされる範囲について検討する。
論文 参考訳(メタデータ) (2022-04-20T00:13:01Z) - Generating Gender Augmented Data for NLP [3.5557219875516655]
ジェンダーバイアスは、NLPベースのアプリケーション、特に性差のある言語で頻繁に発生する。
本稿では,会話文の自動書き直し手法を提案する。
提案するアプローチは、あるジェンダーから別のジェンダーへの"翻訳"を訓練されたニューラルマシン翻訳(NMT)システムに基づいている。
論文 参考訳(メタデータ) (2021-07-13T11:13:21Z) - Improving Gender Translation Accuracy with Filtered Self-Training [14.938401898546548]
機械翻訳システムは、性別が文脈から明確である場合でも、しばしば誤った性別を出力する。
性別不明瞭な入力に対してジェンダー翻訳精度を向上させるためのジェンダーフィルターによる自己訓練手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T18:05:29Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。