MT-RAIG: Novel Benchmark and Evaluation Framework for Retrieval-Augmented Insight Generation over Multiple Tables
- URL: http://arxiv.org/abs/2502.11735v2
- Date: Tue, 18 Feb 2025 05:12:25 GMT
- Title: MT-RAIG: Novel Benchmark and Evaluation Framework for Retrieval-Augmented Insight Generation over Multiple Tables
- Authors: Kwangwook Seo, Donguk Kwon, Dongha Lee,
- Abstract summary: MT-RAIG Bench is designed to evaluate systems on Retrieval-Augmented Insight Generation over Mulitple-Tables.<n>We introduce a fine-grained evaluation framework MT-RAIG Eval, which better alignment with human quality judgments on the generated insights.
- Score: 11.268174270952489
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in table-based reasoning have expanded beyond factoid-level QA to address insight-level tasks, where systems should synthesize implicit knowledge in the table to provide explainable analyses. Although effective, existing studies remain confined to scenarios where a single gold table is given alongside the user query, failing to address cases where users seek comprehensive insights from multiple unknown tables. To bridge these gaps, we propose MT-RAIG Bench, design to evaluate systems on Retrieval-Augmented Insight Generation over Mulitple-Tables. Additionally, to tackle the suboptimality of existing automatic evaluation methods in the table domain, we further introduce a fine-grained evaluation framework MT-RAIG Eval, which achieves better alignment with human quality judgments on the generated insights. We conduct extensive experiments and reveal that even frontier LLMs still struggle with complex multi-table reasoning, establishing our MT-RAIG Bench as a challenging testbed for future research.
Related papers
- TReB: A Comprehensive Benchmark for Evaluating Table Reasoning Capabilities of Large Language Models [30.26407735827857]
Reasoning with table-structured data poses significant challenges for large language models (LLMs)<n>We present a comprehensive table reasoning evolution benchmark, TReB, which measures both shallow table understanding abilities and deep table reasoning abilities.<n>We create an evaluation framework to robustly measure table reasoning capabilities with three distinct inference modes, TCoT, PoT and ICoT.
arXiv Detail & Related papers (2025-06-23T09:02:04Z) - LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - MTR-Bench: A Comprehensive Benchmark for Multi-Turn Reasoning Evaluation [56.87891213797931]
We present MTR-Bench for Large Language Models' Multi-Turn Reasoning evaluation.<n>Comprising 4 classes, 40 tasks, and 3600 instances, MTR-Bench covers diverse reasoning capabilities.<n>MTR-Bench features fully-automated framework spanning both dataset constructions and model evaluations.
arXiv Detail & Related papers (2025-05-21T17:59:12Z) - REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
We introduce REAL-MM-RAG, an automatically generated benchmark designed to address four key properties essential for real-world retrieval.
We propose a multi-difficulty-level scheme based on query rephrasing to evaluate models' semantic understanding beyond keyword matching.
Our benchmark reveals significant model weaknesses, particularly in handling table-heavy documents and robustness to query rephrasing.
arXiv Detail & Related papers (2025-02-17T22:10:47Z) - Benchmarking Table Comprehension In The Wild [9.224698222634789]
TableQuest is a new benchmark designed to evaluate the holistic table comprehension capabilities of Large Language Models (LLMs)<n>We experiment with 7 state-of-the-art models, and find that despite reasonable accuracy in locating facts, they often falter when required to execute more sophisticated reasoning or multi-step calculations.
arXiv Detail & Related papers (2024-12-13T05:52:37Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)
MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.
It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles [20.18736445118689]
We introduce SPLAT, a benchmark leveraging Situation Puzzles to evaluate and elicit lateral thinking of Large Language Models (LLMs)
This benchmark, containing 975 graded situation puzzles across three difficulty levels, employs a new multi-turn player-judge framework instead of the traditional model-based evaluation.
Experiments demonstrate that a robust evaluation model, such as WizardLM-2, closely matches human judgements in both intermediate question-answering and final scenario accuracy.
arXiv Detail & Related papers (2024-10-09T10:09:11Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG is a Retrieval-Augmented Generation (RAG) framework specifically designed for LM-based table understanding.<n>TableRAG leverages query expansion combined with schema and cell retrieval to pinpoint crucial information before providing it to the LMs.<n>Our results demonstrate that TableRAG achieves the highest retrieval quality, leading to the new state-of-the-art performance on large-scale table understanding.
arXiv Detail & Related papers (2024-10-07T04:15:02Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
We introduce the modality importance score (MIS) to identify bias inVidQA benchmarks and datasets.<n>We also propose an innovative method using state-of-the-art MLLMs to estimate the modality importance.<n>Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets.
arXiv Detail & Related papers (2024-08-22T23:32:42Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning [50.45558735526665]
We provide an in-depth and comprehensive evaluation of the performance of MFMs on embodied task planning.
We propose a new benchmark, named MFE-ETP, characterized its complex and variable task scenarios.
Using the benchmark and evaluation platform, we evaluated several state-of-the-art MFMs and found that they significantly lag behind human-level performance.
arXiv Detail & Related papers (2024-07-06T11:07:18Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Wiki-TabNER:Advancing Table Interpretation Through Named Entity
Recognition [19.423556742293762]
We analyse a widely used benchmark dataset for evaluation of TI tasks.
To overcome this drawback, we construct and annotate a new more challenging dataset.
We propose a prompting framework for evaluating the newly developed large language models.
arXiv Detail & Related papers (2024-03-07T15:22:07Z) - ReForm-Eval: Evaluating Large Vision Language Models via Unified
Re-Formulation of Task-Oriented Benchmarks [76.25209974199274]
Large vision-language models (LVLMs) exhibit surprising capabilities to perceive visual signals and perform visually grounded reasoning.
Our benchmark and evaluation framework will be open-sourced as a cornerstone for advancing the development of LVLMs.
arXiv Detail & Related papers (2023-10-04T04:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.