論文の概要: Interpretable Machine Learning for Kronecker Coefficients
- arxiv url: http://arxiv.org/abs/2502.11774v1
- Date: Mon, 17 Feb 2025 13:07:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:04.981493
- Title: Interpretable Machine Learning for Kronecker Coefficients
- Title(参考訳): Kronecker係数の解釈可能な機械学習
- Authors: Giorgi Butbaia, Kyu-Hwan Lee, Fabian Ruehle,
- Abstract要約: 解釈可能な機械学習モデルを用いて、対称群のクロネッカー係数がゼロかどうかを予測する。
我々は,約83%の精度を達成し,b-loading の観点から決定関数の明示的な式を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We analyze the saliency of neural networks and employ interpretable machine learning models to predict whether the Kronecker coefficients of the symmetric group are zero or not. Our models use triples of partitions as input features, as well as b-loadings derived from the principal component of an embedding that captures the differences between partitions. Across all approaches, we achieve an accuracy of approximately 83% and derive explicit formulas for a decision function in terms of b-loadings. Additionally, we develop transformer-based models for prediction, achieving the highest reported accuracy of over 99%.
- Abstract(参考訳): ニューラルネットワークの正当性を解析し、解釈可能な機械学習モデルを用いて対称群のクロネッカー係数がゼロかどうかを予測する。
我々のモデルは、パーティションのトリプルを入力の特徴として使用し、パーティション間の差異をキャプチャする埋め込みの主コンポーネントから派生したbローディングも使用しています。
すべてのアプローチにおいて、約83%の精度を達成し、b-loading の観点から決定関数の明示的な公式を導出する。
さらに,予測のためのトランスフォーマーモデルを開発し,99%以上の精度が報告されている。
関連論文リスト
- Adaptive Basis Function Selection for Computationally Efficient Predictions [2.1499203845437216]
モデル領域のサブドメインにおける予測において,最も重要なBFを自動的に選択する手法を開発した。
これにより、予測精度を維持しながら、計算予測の計算複雑性を著しく低減できる。
論文 参考訳(メタデータ) (2024-08-14T11:53:18Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - Eigen Analysis of Self-Attention and its Reconstruction from Partial
Computation [58.80806716024701]
ドット積に基づく自己注意を用いて計算した注意点のグローバルな構造について検討する。
注意点の変動の大部分は低次元固有空間にあることがわかった。
トークンペアの部分的な部分集合に対してのみスコアを計算し、それを用いて残りのペアのスコアを推定する。
論文 参考訳(メタデータ) (2021-06-16T14:38:42Z) - Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences [22.496696555768846]
統計的距離は確率分布の相似性を定量化する。
このようなデータからの距離を推定する現代的な方法は、ニューラルネットワーク(NN)による変動形態のパラメータ化と最適化に依存する。
本稿では,このトレードオフを非漸近誤差境界を用いて検討し,SDの3つの一般的な選択に焦点をあてる。
論文 参考訳(メタデータ) (2021-03-11T19:47:30Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。