論文の概要: Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences
- arxiv url: http://arxiv.org/abs/2103.06923v1
- Date: Thu, 11 Mar 2021 19:47:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-15 13:09:32.666305
- Title: Non-Asymptotic Performance Guarantees for Neural Estimation of
$\mathsf{f}$-Divergences
- Title(参考訳): 非漸近的性能保証による$\mathsf{f}$-divergencesの神経推定
- Authors: Sreejith Sreekumar, Zhengxin Zhang, Ziv Goldfeld
- Abstract要約: 統計的距離は確率分布の相似性を定量化する。
このようなデータからの距離を推定する現代的な方法は、ニューラルネットワーク(NN)による変動形態のパラメータ化と最適化に依存する。
本稿では,このトレードオフを非漸近誤差境界を用いて検討し,SDの3つの一般的な選択に焦点をあてる。
- 参考スコア(独自算出の注目度): 22.496696555768846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical distances (SDs), which quantify the dissimilarity between
probability distributions, are central to machine learning and statistics. A
modern method for estimating such distances from data relies on parametrizing a
variational form by a neural network (NN) and optimizing it. These estimators
are abundantly used in practice, but corresponding performance guarantees are
partial and call for further exploration. In particular, there seems to be a
fundamental tradeoff between the two sources of error involved: approximation
and estimation. While the former needs the NN class to be rich and expressive,
the latter relies on controlling complexity. This paper explores this tradeoff
by means of non-asymptotic error bounds, focusing on three popular choices of
SDs -- Kullback-Leibler divergence, chi-squared divergence, and squared
Hellinger distance. Our analysis relies on non-asymptotic function
approximation theorems and tools from empirical process theory. Numerical
results validating the theory are also provided.
- Abstract(参考訳): 確率分布の相違度を定量化する統計的距離(SD)は、機械学習と統計の中心である。
このようなデータからの距離を推定する現代的な方法は、ニューラルネットワーク(NN)による変動形態のパラメータ化と最適化に依存する。
これらの推定器は実際は多用されているが、それに対応する性能保証は部分的であり、さらなる探索が必要である。
特に、2つのエラー源の間には、近似と推定という根本的なトレードオフがあるようだ。
前者はリッチで表現力のあるNNクラスを必要とするが、後者は複雑さを制御することに依存する。
本稿では,非漸近的誤差境界によるこのトレードオフを,kullback-leibler divergence,chi-squared divergence,squared hellinger distanceというsdsの3つの一般的な選択肢に着目して検討する。
この解析は非漸近的関数近似定理と経験的過程論からのツールに依存する。
理論を検証した数値結果も提供される。
関連論文リスト
- Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
この研究は、確率変換によって訓練されたODEモデルによる分布学習のための最初の一般統計収束解析を確立する。
後者はクラス $mathcal F$ の$C1$-metric entropy で定量化できることを示す。
次に、この一般フレームワークを$Ck$-smoothターゲット密度の設定に適用し、関連する2つの速度場クラスに対する最小最適収束率を$mathcal F$:$Ck$関数とニューラルネットワークに設定する。
論文 参考訳(メタデータ) (2023-09-03T00:21:37Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
本稿では,凸問題の文脈における統計的推論のための勾配降下(SGD)の理論的性質について検討する。
多重誤差最小値を含む2つの干渉手順を提案する。
論文 参考訳(メタデータ) (2023-06-03T22:08:10Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
ガウスのプロセスはデータセットのサイズとともに違法にスケールする。
多くの近似法が開発されており、必然的に近似誤差を導入している。
この余分な不確実性の原因は、計算が限られているため、近似後部を使用すると完全に無視される。
本研究では,観測された有限個のデータと有限個の計算量の両方から生じる組合せ不確実性を一貫した推定を行う手法の開発を行う。
論文 参考訳(メタデータ) (2022-05-30T22:16:25Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Neural Estimation of Statistical Divergences [24.78742908726579]
ニューラルネットワーク(NN)による経験的変動形態のパラメトリゼーションによる統計的発散推定の一手法
特に、近似と経験的推定という2つのエラー源の間には、根本的なトレードオフがある。
NN成長速度がわずかに異なる神経推定器は、最小値の最適値に近づき、パラメトリック収束率を対数因子まで達成できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:42:44Z) - Advantage of Deep Neural Networks for Estimating Functions with
Singularity on Hypersurfaces [23.21591478556582]
我々は、ディープニューラルネットワーク(DNN)が他の標準手法よりも優れている理由を説明するために、ミニマックスレート分析を開発する。
本研究では,超曲面上の特異点を持つ非滑らか関数のクラスを推定することにより,このギャップを埋めようとしている。
論文 参考訳(メタデータ) (2020-11-04T12:51:14Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
ディープニューラルネットワークにおける不確実性を定量化するための,新しい単一モデルに基づくアプローチを提案する。
平均場近似式を用いて解析的に難解な積分を計算する。
実験的に,提案手法は最先端の手法と比較して競合的に機能する。
論文 参考訳(メタデータ) (2020-06-13T07:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。