論文の概要: Bi-invariant Geodesic Regression with Data from the Osteoarthritis Initiative
- arxiv url: http://arxiv.org/abs/2502.11826v1
- Date: Mon, 17 Feb 2025 14:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:08.176647
- Title: Bi-invariant Geodesic Regression with Data from the Osteoarthritis Initiative
- Title(参考訳): 変形性膝関節症を主訴とした二変法ジオデシック回帰
- Authors: Johannes Schade, Christoph von Tycowicz, Martin Hanik,
- Abstract要約: 我々はアフィン接続設定を用いた非計量推定器を開発した。
その計算のために,簡単な微分式を必要とする効率的な固定点アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License:
- Abstract: Many phenomena are naturally characterized by measuring continuous transformations such as shape changes in medicine or articulated systems in robotics. Modeling the variability in such datasets requires performing statistics on Lie groups, that is, manifolds carrying an additional group structure. As the Lie group captures the symmetries in the data, it is essential from a theoretical and practical perspective to ask for statistical methods that respect these symmetries; this way they are insensitive to confounding effects, e.g., due to the choice of reference coordinate systems. In this work, we investigate geodesic regression -- a generalization of linear regression originally derived for Riemannian manifolds. While Lie groups can be endowed with Riemannian metrics, these are generally incompatible with the group structure. We develop a non-metric estimator using an affine connection setting. It captures geodesic relationships respecting the symmetries given by left and right translations. For its computation, we propose an efficient fixed point algorithm requiring simple differential expressions that can be calculated through automatic differentiation. We perform experiments on a synthetic example and evaluate our method on an open-access, clinical dataset studying knee joint configurations under the progression of osteoarthritis.
- Abstract(参考訳): 多くの現象は、医学における形状変化やロボット工学における調音システムのような連続的な変換を測定することで自然に特徴づけられる。
そのようなデータセットにおける変数のモデル化には、リー群、すなわち追加のグループ構造を持つ多様体の統計処理が必要である。
リー群がデータ中の対称性を捉えているため、これらの対称性を尊重する統計的手法を求めるためには理論的かつ実践的な視点から欠かせない。
本研究では、リーマン多様体から導かれる線型回帰の一般化である測地的回帰について検討する。
リー群はリーマン計量で与えられるが、一般に群構造とは相容れない。
我々はアフィン接続設定を用いた非計量推定器を開発した。
左右の翻訳によって与えられる対称性に関する測地学的関係を捉えている。
そこで本研究では, 自動微分によって計算可能な, 単純な微分式を必要とする, 効率的な固定点アルゴリズムを提案する。
変形性膝関節症の進行にともなう膝関節構成を調べたオープンアクセス・クリニカルデータセットを用いて, 人工膝関節の症例実験を行い, 評価を行った。
関連論文リスト
- Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
1-パラメータ群で定義された変換に基づく新しい対称性学習アルゴリズムを提案する。
この手法は最小限の帰納バイアスに基づいて構築され、リー群に根付いた一般的な対称性だけでなく、非線形発生器由来の対称性にまで拡張される。
論文 参考訳(メタデータ) (2024-10-29T08:28:23Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - SymmetryLens: A new candidate paradigm for unsupervised symmetry learning via locality and equivariance [0.0]
我々は、生データから始まる新しい教師なし対称性学習法を開発した。
この対称性と局所性の結合は,エントロピー推定のために開発された特別な最適化手法とともに,高度に安定なシステムをもたらすことを実証する。
私たちが考える対称性の作用は群表現であるが、このアプローチは非可換リー群のより一般的な非線形作用に一般化される可能性があると信じている。
論文 参考訳(メタデータ) (2024-10-07T17:40:51Z) - Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups [11.572188414440436]
我々は、対称性群の無限小生成子の作用のみを利用する新しいアプローチであるLie aLgebrA Canonicalization (LieLAC)を提案する。
標準化のフレームワーク内で運用されているため、LieLACは制約のない事前訓練されたモデルと容易に統合できる。
論文 参考訳(メタデータ) (2024-10-03T17:21:30Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
力学系の離散的形態対称性について検討する。
これらの対称性は、系の形態学における1つ以上の平面/対称性の軸の存在から生じる。
我々はこれらの対称性をデータ拡張と$G$-equivariant Neural Networkを用いて活用する。
論文 参考訳(メタデータ) (2023-02-21T04:10:16Z) - Generative Adversarial Symmetry Discovery [19.098785309131458]
リーGANは対称性を解釈可能なリー代数基底として表現し、様々な対称性を発見できる。
学習された対称性は、予測の精度と一般化を改善するために、既存の同変ニューラルネットワークで容易に利用することができる。
論文 参考訳(メタデータ) (2023-02-01T04:28:36Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
ラベル付きデータセットに存在する連続した対称性群の検出と同定のためのディープラーニングアルゴリズムを設計する。
完全に接続されたニューラルネットワークを用いて、変換対称性と対応するジェネレータをモデル化する。
また,Lie群とその性質の数学的研究に機械学習アプローチを使うための扉を開く。
論文 参考訳(メタデータ) (2023-01-13T16:25:25Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。