CAMEL: Continuous Action Masking Enabled by Large Language Models for Reinforcement Learning
- URL: http://arxiv.org/abs/2502.11896v1
- Date: Mon, 17 Feb 2025 15:22:19 GMT
- Title: CAMEL: Continuous Action Masking Enabled by Large Language Models for Reinforcement Learning
- Authors: Yanxiao Zhao, Yangge Qian, Jingyang Shan, Xiaolin Qin,
- Abstract summary: Reinforcement learning (RL) in continuous action spaces encounters persistent challenges, such as inefficient exploration and convergence to suboptimal solutions.
We propose CAMEL, a novel framework integrating LLM-generated suboptimal policies into the RL training pipeline.
- Score: 3.602902292270654
- License:
- Abstract: Reinforcement learning (RL) in continuous action spaces encounters persistent challenges, such as inefficient exploration and convergence to suboptimal solutions. To address these limitations, we propose CAMEL, a novel framework integrating LLM-generated suboptimal policies into the RL training pipeline. CAMEL leverages dynamic action masking and an adaptive epsilon-masking mechanism to guide exploration during early training stages while gradually enabling agents to optimize policies independently. At the core of CAMEL lies the integration of Python-executable suboptimal policies generated by LLMs based on environment descriptions and task objectives. Although simplistic and hard-coded, these policies offer valuable initial guidance for RL agents. To effectively utilize these priors, CAMEL employs masking-aware optimization to dynamically constrain the action space based on LLM outputs. Additionally, epsilon-masking gradually reduces reliance on LLM-generated guidance, enabling agents to transition from constrained exploration to autonomous policy refinement. Experimental validation on Gymnasium MuJoCo environments demonstrates the effectiveness of CAMEL. In Hopper-v4 and Ant-v4, LLM-generated policies significantly improve sample efficiency, achieving performance comparable to or surpassing expert masking baselines. For Walker2d-v4, where LLMs struggle to accurately model bipedal gait dynamics, CAMEL maintains robust RL performance without notable degradation, highlighting the framework's adaptability across diverse tasks. While CAMEL shows promise in enhancing sample efficiency and mitigating convergence challenges, these issues remain open for further research. Future work aims to generalize CAMEL to multimodal LLMs for broader observation-action spaces and automate policy evaluation, reducing human intervention and enhancing scalability in RL training pipelines.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments [25.866960634041092]
Current solutions rely on domain-specific architectures or techniques, and a general DL approach for constrained optimization remains undeveloped.
We propose a large language model for resource allocation (LLM-RAO) to address the complex resource allocation problem while adhering to constraints.
LLM-RAO achieves up to a 40% performance enhancement compared to conventional DL methods and up to an $80$% improvement over analytical approaches.
arXiv Detail & Related papers (2025-02-04T12:56:59Z) - Large Language Model driven Policy Exploration for Recommender Systems [50.70228564385797]
offline RL policies trained on static user data are vulnerable to distribution shift when deployed in dynamic online environments.
Online RL-based RS also face challenges in production deployment due to the risks of exposing users to untrained or unstable policies.
Large Language Models (LLMs) offer a promising solution to mimic user objectives and preferences for pre-training policies offline.
We propose an Interaction-Augmented Learned Policy (iALP) that utilizes user preferences distilled from an LLM.
arXiv Detail & Related papers (2025-01-23T16:37:44Z) - SAC-GLAM: Improving Online RL for LLM agents with Soft Actor-Critic and Hindsight Relabeling [29.29604779151457]
This paper presents and studies an adaptation of Soft Actor-Critic and hindsight relabeling to LLM agents.
Our method paves the path towards autotelic LLM agents that learn online but can also outperform on-policy methods in more classic multi-goal RL environments.
arXiv Detail & Related papers (2024-10-16T11:59:27Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Beyond Human Preferences: Exploring Reinforcement Learning Trajectory Evaluation and Improvement through LLMs [12.572869123617783]
Reinforcement learning (RL) faces challenges in evaluating policy trajectories within intricate game tasks.
PbRL presents a pioneering framework that capitalizes on human preferences as pivotal reward signals.
We propose a LLM-enabled automatic preference generation framework named LLM4PG.
arXiv Detail & Related papers (2024-06-28T04:21:24Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
We present a new framework for reward optimization, Value Augmented Sampling (VAS)
VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function.
Our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time.
arXiv Detail & Related papers (2024-05-10T17:59:04Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - True Knowledge Comes from Practice: Aligning LLMs with Embodied
Environments via Reinforcement Learning [37.10401435242991]
Large language models (LLMs) often fail in solving simple decision-making tasks due to misalignment of the knowledge in LLMs with environments.
We propose TWOSOME, a novel framework that deploys LLMs as decision-making agents to efficiently interact and align with embodied environments via RL.
arXiv Detail & Related papers (2024-01-25T13:03:20Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.