RLAE: Reinforcement Learning-Assisted Ensemble for LLMs
- URL: http://arxiv.org/abs/2506.00439v1
- Date: Sat, 31 May 2025 07:38:41 GMT
- Title: RLAE: Reinforcement Learning-Assisted Ensemble for LLMs
- Authors: Yuqian Fu, Yuanheng Zhu, Jiajun Chai, Guojun Yin, Wei Lin, Qichao Zhang, Dongbin Zhao,
- Abstract summary: Large language models (LLMs) can effectively combine diverse strengths of different models, offering a promising approach to enhance performance across various tasks.<n>We propose Reinforcement Learning-Assisted Ensemble for LLMs, a novel framework that reformulates ensemble through the lens of a Markov Decision Process (MDP)<n>Our approach introduces a RL agent that dynamically adjusts ensemble weights by considering both input context and intermediate generation states.
- Score: 21.77261258691006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensembling large language models (LLMs) can effectively combine diverse strengths of different models, offering a promising approach to enhance performance across various tasks. However, existing methods typically rely on fixed weighting strategies that fail to adapt to the dynamic, context-dependent characteristics of LLM capabilities. In this work, we propose Reinforcement Learning-Assisted Ensemble for LLMs (RLAE), a novel framework that reformulates LLM ensemble through the lens of a Markov Decision Process (MDP). Our approach introduces a RL agent that dynamically adjusts ensemble weights by considering both input context and intermediate generation states, with the agent being trained using rewards that directly correspond to the quality of final outputs. We implement RLAE using both single-agent and multi-agent reinforcement learning algorithms ($\text{RLAE}_\text{PPO}$ and $\text{RLAE}_\text{MAPPO}$ ), demonstrating substantial improvements over conventional ensemble methods. Extensive evaluations on a diverse set of tasks show that RLAE outperforms existing approaches by up to $3.3\%$ accuracy points, offering a more effective framework for LLM ensembling. Furthermore, our method exhibits superior generalization capabilities across different tasks without the need for retraining, while simultaneously achieving lower time latency.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
arXiv Detail & Related papers (2025-05-21T09:35:43Z) - EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning [6.675088737484839]
We introduce an Ensemble Multi-Objective RL (EMORL) framework that fine-tunes multiple models with individual objectives.<n>Our method is the first to aggregate the last hidden states of individual models, incorporating contextual information from multiple objectives.<n>We demonstrate the advantages of EMORL against existing baselines in experiments on the PAIR and Psych8k datasets.
arXiv Detail & Related papers (2025-05-05T11:30:46Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.<n>We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks.<n>Existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs.<n>We propose a novel RL algorithm, SWEET-RL, that uses a carefully designed optimization objective to train a critic model with access to additional training-time information.<n>Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms.
arXiv Detail & Related papers (2025-03-19T17:55:08Z) - LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.<n>We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.<n>We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning [10.186029242664931]
We present MAPO-LSO which applies a form of comprehensive representation learning devised to supplement MARL training.
Specifically, MAPO-LSO proposes a multi-agent extension of transition dynamics reconstruction and self-predictive learning.
Empirical results demonstrate MAPO-LSO to show notable improvements in sample efficiency and learning performance compared to its vanilla MARL counterpart.
arXiv Detail & Related papers (2024-06-05T03:11:44Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.