論文の概要: A limited technical background is sufficient for attack-defense tree acceptability
- arxiv url: http://arxiv.org/abs/2502.11920v1
- Date: Mon, 17 Feb 2025 15:33:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:08:05.642026
- Title: A limited technical background is sufficient for attack-defense tree acceptability
- Title(参考訳): 限られた技術的背景は攻撃防御木の受容性に十分である
- Authors: Nathan Daniel Schiele, Olga Gadyatskaya,
- Abstract要約: アタック・ディフェンス・ツリー(ADT)は、セキュリティ関連の情報を分析・伝達するために非常に推奨される、グラフィカルな脅威モデリング手法である。
既存の攻撃木の実証研究は、高度に技術的(コンピュータ科学)なバックグラウンドを持つユーザに対してのみ、その受容性を確立している。
本研究は,ADTの受容性に対するユーザの技術的背景の影響を実証的研究で検証することによって,このギャップに対処する。
- 参考スコア(独自算出の注目度): 0.7980273012483662
- License:
- Abstract: Attack-defense trees (ADTs) are a prominent graphical threat modeling method that is highly recommended for analyzing and communicating security-related information. Despite this, existing empirical studies of attack trees have established their acceptability only for users with highly technical (computer science) backgrounds while raising questions about their suitability for threat modeling stakeholders with a limited technical background. Our research addresses this gap by investigating the impact of the users' technical background on ADT acceptability in an empirical study. Our Method Evaluation Model-based study consisted of n = 102 participants (53 with a strong computer science background and 49 with a limited computer science background) who were asked to complete a series of ADT-related tasks. By analyzing their responses and comparing the results, we reveal that a very limited technical background is sufficient for ADT acceptability. This finding underscores attack trees' viability as a threat modeling method.
- Abstract(参考訳): アタック・ディフェンス・ツリー(ADT)は、セキュリティ関連の情報を分析・伝達するために非常に推奨される、グラフィカルな脅威モデリング手法である。
それにもかかわらず、既存の攻撃木に関する実証的研究は、高度な技術的(コンピュータ科学)の背景を持つユーザに対してのみ許容性を確立しつつ、技術的背景が限定された脅威モデリングステークホルダーに対する適合性に関する疑問を提起している。
本研究は,ADTの受容性に対するユーザの技術的背景の影響を実証的研究で検証することによって,このギャップに対処する。
提案手法評価モデルに基づく研究は,n = 102人(コンピュータ科学のバックグラウンドが強い53人,コンピュータ科学のバックグラウンドが限られている49人)からなり,一連のADT関連タスクを完了するよう求められた。
応答を分析し,結果を比較することで,ATTの受容性には技術的背景が極めて限定されていることが明らかとなった。
この発見は、脅威モデリング手法として木々の生存可能性を評価する。
関連論文リスト
- Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
敵対的攻撃は、画像分類におけるディープラーニングモデルの堅牢性に重大な脅威をもたらす。
本稿では,ニューラルネットワークのレジリエンスを高めるために,これらの攻撃に対する防御機構を探索し,洗練する。
論文 参考訳(メタデータ) (2024-08-20T02:00:02Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
医療画像や自律運転などの安全クリティカルな応用においては、高い敵の堅牢性を維持し、潜在的敵の攻撃から保護することが不可欠である。
敵対的に訓練されたモデルに固有の不確実性に関して、注目すべき知識ギャップが残っている。
本研究では,共形予測(CP)の性能を標準対向攻撃の文脈で検証することにより,ディープラーニングモデルの不確実性について検討する。
論文 参考訳(メタデータ) (2024-05-14T18:05:19Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
本研究では,その軽減を未学習課題として扱うことによって,バックドア攻撃に対抗する新しい手法を提案する。
このアプローチは単純さと有効性を提供し、データ可用性に制限のあるシナリオに適しています。
論文 参考訳(メタデータ) (2024-05-07T00:36:56Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - A Review of Topological Data Analysis for Cybersecurity [1.0878040851638]
トポロジカルデータ解析(TDA)は、代数的トポロジの技法を用いて、データの高レベル構造を研究する。
我々は、サイバーセキュリティデータサイエンスを改善する強力な可能性を持つ、有望な新しい領域について、研究者に強調したい。
論文 参考訳(メタデータ) (2022-02-16T13:03:52Z) - Towards automation of threat modeling based on a semantic model of
attack patterns and weaknesses [0.0]
本研究は,形式的知識基盤(モデル)の構築と利用に関する課題を考察する。
提案モデルは、様々な脅威景観を構築するために、テクニック、攻撃パターン、弱点、脆弱性の関係を学習するために使用できる。
論文 参考訳(メタデータ) (2021-12-08T11:13:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。