論文の概要: Technique Inference Engine: A Recommender Model to Support Cyber Threat Hunting
- arxiv url: http://arxiv.org/abs/2503.04819v1
- Date: Tue, 04 Mar 2025 22:31:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:56:57.277433
- Title: Technique Inference Engine: A Recommender Model to Support Cyber Threat Hunting
- Title(参考訳): 技術推論エンジン:サイバー脅威追跡を支援するレコメンダモデル
- Authors: Matthew J. Turner, Mike Carenzo, Jackie Lasky, James Morris-King, James Ross,
- Abstract要約: サイバー脅威ハンティングは、ネットワーク内の潜伏脅威を積極的に探すプラクティスである。
キャンペーンの一部として同時に発生する可能性のあるテクニックを特定する上で,アナリストを支援するために,Technology Inference Engineを提案する。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License:
- Abstract: Cyber threat hunting is the practice of proactively searching for latent threats in a network. Engaging in threat hunting can be difficult due to the volume of network traffic, variety of adversary techniques, and constantly evolving vulnerabilities. To aid analysts in identifying techniques which may be co-occurring as part of a campaign, we present the Technique Inference Engine, a tool to infer tactics, techniques, and procedures (TTPs) which may be related to existing observations of adversarial behavior. We compile the largest (to our knowledge) available dataset of cyber threat intelligence (CTI) reports labeled with relevant TTPs. With the knowledge that techniques are chronically under-reported in CTI, we apply several implicit feedback recommender models to the data in order to predict additional techniques which may be part of a given campaign. We evaluate the results in the context of the cyber analyst's use case and apply t-SNE to visualize the model embeddings. We provide our code and a web interface.
- Abstract(参考訳): サイバー脅威ハンティングは、ネットワーク内の潜伏脅威を積極的に探すプラクティスである。
ネットワークトラフィックの量、様々な敵のテクニック、絶えず進化する脆弱性のため、脅威ハンティングの実施は困難である。
キャンペーンの一環として発生しうるテクニックの特定を支援するため,既存の敵行動観測と関連する戦術,技術,手順(TTP)を推論する技術推論エンジンを提案する。
我々は、サイバー脅威インテリジェンス(CTI)レポートの最大の(私たちの知る限り)データセットをコンパイルし、関連するTPをラベル付けします。
CTIではテクニックが慢性的に報告されていないという知識により、特定のキャンペーンの一部である可能性のある追加のテクニックを予測するために、暗黙のフィードバックレコメンデータモデルをデータに適用する。
我々は、サイバーアナリストのユースケースの文脈で結果を評価し、モデル埋め込みの可視化にt-SNEを適用した。
コードとWebインターフェースを提供しています。
関連論文リスト
- A Multidisciplinary Approach to Telegram Data Analysis [0.0]
本稿では,サイバー脅威に関する早期警戒情報を得るために,Telegramのデータ分析のための多分野的アプローチを提案する。
ニューラルネットワークアーキテクチャと従来の機械学習アルゴリズムを組み合わせています。
我々は、サイバー脅威に対する早期警告システムを強化し、潜在的なセキュリティ侵害に対するより積極的な対応を可能にすることを目指している。
論文 参考訳(メタデータ) (2024-12-29T09:10:52Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
脅威知能の文脈で適用されたNLP技術の概要について概説する。
デジタル資産を保護するための主要なツールとして、CTIの基本的定義と原則を説明することから始まる。
その後、WebソースからのCTIデータクローリングのためのNLPベースのテクニック、CTIデータ分析、サイバーセキュリティデータからの関係抽出、CTIの共有とコラボレーション、CTIのセキュリティ脅威の徹底的な調査を行う。
論文 参考訳(メタデータ) (2023-11-15T09:23:33Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Automated Retrieval of ATT&CK Tactics and Techniques for Cyber Threat
Reports [5.789368942487406]
我々は,非構造化テキストから戦術,技法,手順を自動的に抽出するいくつかの分類手法を評価する。
我々は、私たちの発見に基づいて構築されたツールrcATTを紹介し、サイバー脅威レポートの自動分析をサポートするために、セキュリティコミュニティに自由に配布する。
論文 参考訳(メタデータ) (2020-04-29T16:45:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。