Qubit-Based Framework for Quantum Machine Learning: Bridging Classical Data and Quantum Algorithms
- URL: http://arxiv.org/abs/2502.11951v1
- Date: Mon, 17 Feb 2025 16:04:04 GMT
- Title: Qubit-Based Framework for Quantum Machine Learning: Bridging Classical Data and Quantum Algorithms
- Authors: Bhavna Bose, Saurav Verma,
- Abstract summary: This paper dives into the exciting and rapidly growing field of quantum computing.
It explains its core ideas, current progress, and how it could revolutionize the way we solve complex problems.
A big part of this paper focuses on Quantum Machine Learning (QML), where the strengths of quantum computing meet the world of artificial intelligence.
- Score: 0.0
- License:
- Abstract: This paper dives into the exciting and rapidly growing field of quantum computing, explaining its core ideas, current progress, and how it could revolutionize the way we solve complex problems. It starts by breaking down the basics, like qubits, quantum circuits, and how principles like superposition and entanglement make quantum computers fundamentally different-and far more powerful for certain tasks-than the classical computers we use today. We also explore how quantum computing deals with complex problems and why it is uniquely suited for challenges classical systems struggle to handle. A big part of this paper focuses on Quantum Machine Learning (QML), where the strengths of quantum computing meet the world of artificial intelligence. By processing massive datasets and optimizing intricate algorithms, quantum systems offer new possibilities for machine learning. We highlight different approaches to combining quantum and classical computing, showing how they can work together to produce faster and more accurate results. Additionally, we explore the tools and platforms available-like TensorFlow Quantum, Qiskit and PennyLane-that are helping researchers and developers bring these theories to life. Of course, quantum computing has its hurdles. Challenges like scaling up hardware, correcting errors, and keeping qubits stable are significant roadblocks. Yet, with rapid advancements in cloud-based platforms and innovative technologies, the potential of quantum computing feels closer than ever. This paper aims to offer readers a clear and comprehensive introduction to quantum computing, its role in machine learning, and the immense possibilities it holds for the future of technology.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum computing through the lens of control: A tutorial introduction [0.6077284832583713]
This paper provides a tutorial introduction to quantum computing from the perspective of control theory.
The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics.
arXiv Detail & Related papers (2023-10-19T08:25:50Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
We show that digital hardware is inherently constrained in solving problems about optimization, deep learning, or differential equations.
In contrast, analog computing models, such as the Blum-Shub-Smale machine, exhibit the potential to surmount these limitations.
arXiv Detail & Related papers (2023-07-03T19:10:45Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Architectures for Quantum Information Processing [5.190207094732672]
Quantum computing is changing the way we think about computing.
Quantum phenomena like superposition, entanglement, and interference can be exploited to solve issues that are difficult for traditional computers.
IBM's first public access to true quantum computers through the cloud, as well as Google's demonstration of quantum supremacy, are among the accomplishments.
arXiv Detail & Related papers (2022-11-11T19:18:44Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.