Quantum computing through the lens of control: A tutorial introduction
- URL: http://arxiv.org/abs/2310.12571v2
- Date: Tue, 03 Dec 2024 09:01:37 GMT
- Title: Quantum computing through the lens of control: A tutorial introduction
- Authors: Julian Berberich, Daniel Fink,
- Abstract summary: This paper provides a tutorial introduction to quantum computing from the perspective of control theory.
The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics.
- Score: 0.6077284832583713
- License:
- Abstract: Quantum computing is a fascinating interdisciplinary research field that promises to revolutionize computing by efficiently solving previously intractable problems. Recent years have seen tremendous progress on both the experimental realization of quantum computing devices as well as the development and implementation of quantum algorithms. Yet, realizing computational advantages of quantum computers in practice remains a widely open problem due to numerous fundamental challenges. Interestingly, many of these challenges are connected to performance, robustness, scalability, optimization, or feedback, all of which are central concepts in control theory. This paper provides a tutorial introduction to quantum computing from the perspective of control theory. We introduce the mathematical framework of quantum algorithms ranging from basic elements including quantum bits and quantum gates to more advanced concepts such as variational quantum algorithms and quantum errors. The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics. Our main goal is to equip readers with the mathematical basics required to understand and possibly solve (control-related) problems in quantum computing. In particular, beyond the tutorial introduction, we provide a list of research challenges in the field of quantum computing and discuss their connections to control.
Related papers
- Qubit-Based Framework for Quantum Machine Learning: Bridging Classical Data and Quantum Algorithms [0.0]
This paper dives into the exciting and rapidly growing field of quantum computing.
It explains its core ideas, current progress, and how it could revolutionize the way we solve complex problems.
A big part of this paper focuses on Quantum Machine Learning (QML), where the strengths of quantum computing meet the world of artificial intelligence.
arXiv Detail & Related papers (2025-02-17T16:04:04Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - An Introduction to Quantum Computing for Statisticians [2.3757641219977392]
Quantum computing has the potential to revolutionise and change the way we live and understand the world.
This review aims to provide an accessible introduction to quantum computing with a focus on applications in statistics and data analysis.
arXiv Detail & Related papers (2021-12-13T12:08:28Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.