Unitality Conditions on Subsystems in Quantum Dynamics
- URL: http://arxiv.org/abs/2502.11956v2
- Date: Mon, 28 Apr 2025 09:43:35 GMT
- Title: Unitality Conditions on Subsystems in Quantum Dynamics
- Authors: Anumita Mukhopadhyay, Shibdas Roy, Arun Kumar Pati,
- Abstract summary: We show that if the noise acting on the system is unital (non-unital), then the noise acting on the environment must also be unital (non-unital)<n>Our result may be of interest in quantum information, and we anticipate it to be useful in various contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is known that non-unital noise such as the amplitude damping can sometimes increase quantum correlations, while unital noise such as the dephasing usually decreases quantum correlations. It is, therefore, important to delineate the conditions, when noise can enhance the quantumness of the system. Here, we show that if the noise acting on the system is unital (non-unital), then the noise acting on the environment must also be unital (non-unital), for the evolution to be unitary in the joint system-environment space. For example, if the first two qubits are treated as system and the third qubit is treated as environment, then both the system and the environment evolve unitally in case of a three-qubit GHZ state, and both of them evolve non-unitally in case of a three-qubit W state. Our result may be of interest in quantum information, and we anticipate it to be useful in various contexts, such as to better tackle noise in quantum computing and quantum information processing.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Exploring entanglement resource in Si quantum dot systems with
operational quasiprobability approach [0.9137554315375919]
We characterize the quantum entanglement of the realistic two-qubit signals that are sensitive to charge noises.
We employ the marginal operational quasiprobability (OQ) approach that allows negative values of the probability function if a given state is entangled.
arXiv Detail & Related papers (2022-03-30T08:05:57Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Quantum steering and quantum discord under noisy channels and
entanglement swapping [0.0]
Quantum entanglement, discord, and EPR-steering are valuable resources for fuelling quantum information-theoretic protocols.
EPR-steering is more general than Bell-nonlocality and yet more restrictive than entanglement.
Quantum discord on the other hand, captures non-classical behaviour beyond that of entanglement.
arXiv Detail & Related papers (2021-12-18T23:52:13Z) - Discord and Decoherence [0.0]
We investigate how quantum discord is modified by a quantum-to-classical transition.
We find that the evolution of quantum discord in presence of an environment is a competition between the growth of the squeezing amplitude and the decrease of the state purity.
arXiv Detail & Related papers (2021-12-09T17:01:54Z) - Decoherence in the three-state quantum walk [0.0]
We analyze the decoherence in a three-state uni-dimensional quantum walk.
The approaches taken into consideration to account for the environment effects are phase and amplitude damping operators, unitary noise on the coin space, and broken links.
arXiv Detail & Related papers (2021-07-19T19:40:00Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.