論文の概要: CriteoPrivateAd: A Real-World Bidding Dataset to Design Private Advertising Systems
- arxiv url: http://arxiv.org/abs/2502.12103v2
- Date: Wed, 19 Feb 2025 12:35:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:57:52.045269
- Title: CriteoPrivateAd: A Real-World Bidding Dataset to Design Private Advertising Systems
- Title(参考訳): CriteoPrivateAd: プライベート広告システムを設計するためのリアルタイム入札データセット
- Authors: Mehdi Sebbar, Corentin Odic, Mathieu Léchine, Aloïs Bissuel, Nicolas Chrysanthos, Anthony D'Amato, Alexandre Gilotte, Fabian Höring, Sarah Nogueira, Maxime Vono,
- Abstract要約: このデータセットは、Criteoプロダクションログの匿名バージョンを表している。
これは、多くのプライバシー制約の下で、オンライン広告で一般的に使用される入札モデルを学ぶのに十分なデータを提供する。
- 参考スコア(独自算出の注目度): 36.80382261547636
- License:
- Abstract: In the past years, many proposals have emerged in order to address online advertising use-cases without access to third-party cookies. All these proposals leverage some privacy-enhancing technologies such as aggregation or differential privacy. Yet, no public and rich-enough ground truth is currently available to assess the relevancy of aforementioned private advertising frameworks. We are releasing the largest, in terms of number of features, bidding dataset specifically built in alignment with the design of major browser vendors proposals such as Chrome Privacy Sandbox. This dataset, coined CriteoPrivateAd, stands for an anonymised version of Criteo production logs and provides sufficient data to learn bidding models commonly used in online advertising under many privacy constraints (delayed reports, display and user-level differential privacy, user signal quantisation or aggregated reports). We ensured that this dataset, while being anonymised, is able to provide offline results close to production performance of adtech companies including Criteo - making it a relevant ground truth to design private advertising systems. The dataset is available in Hugging Face: https://huggingface.co/datasets/criteo/CriteoPrivateAd.
- Abstract(参考訳): 近年、サードパーティーのクッキーにアクセスせずにオンライン広告のユースケースに対処する提案が数多く出ている。
これらの提案はすべて、アグリゲーションや差分プライバシーなど、いくつかのプライバシー強化技術を活用している。
しかし、前述のプライベート広告フレームワークの関連性を評価するために、現在、公開とリッチな基礎的な真実は公開されていない。
私たちは、Chrome Privacy Sandboxのような主要なブラウザベンダーの提案に沿って特別に構築されたデータセットを入札する、多数の機能に関して、最も大きなものをリリースしています。
このデータセットはCriteoPrivateAdと呼ばれ、匿名化されたCriteoプロダクションログを意味し、多くのプライバシー制約の下でオンライン広告で一般的に使用される入札モデル(遅延レポート、ディスプレイおよびユーザーレベルの差分プライバシー、ユーザー信号の量子化、集約レポート)を学習するための十分なデータを提供する。
匿名化されているにもかかわらず、このデータセットがCriteoを含むアドテック企業のプロダクションパフォーマンスに近いオフライン結果を提供できることを保証しました。
データセットはHugging Faceで利用できる。 https://huggingface.co/datasets/criteo/CriteoPrivateAd。
関連論文リスト
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - PrivacyRestore: Privacy-Preserving Inference in Large Language Models via Privacy Removal and Restoration [18.11846784025521]
PrivacyRestoreは、推論中のユーザの入力のプライバシを保護するためのプラグイン・アンド・プレイ方式である。
プライバシストアの有効性を評価するために、医療ドメインと法律ドメインをカバーする3つのデータセットを作成します。
論文 参考訳(メタデータ) (2024-06-03T14:57:39Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Towards a User Privacy-Aware Mobile Gaming App Installation Prediction
Model [0.8602553195689513]
本研究では,モバイルゲームアプリのインストールを需要側プラットフォームの観点から予測するプロセスについて検討する。
プライバシ保護とモデルパフォーマンスのトレードオフについて検討する。
プライバシーを意識したモデルは依然として重要な能力を保っていると結論付けている。
論文 参考訳(メタデータ) (2023-02-07T09:14:59Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Lessons from the AdKDD'21 Privacy-Preserving ML Challenge [57.365745458033075]
W3Cの顕著な提案では、過去のディスプレイの集計された、差別化されたプライベートなレポートを通じてのみ広告信号を共有することができる。
この提案を広く研究するために、AdKDD'21でオープンなプライバシ保護機械学習チャレンジが行われた。
重要な発見は、大量の集約されたデータの小さな集合が存在する場合の学習モデルは驚くほど効率的で安価であることである。
論文 参考訳(メタデータ) (2022-01-31T11:09:59Z) - Utility-aware Privacy-preserving Data Releasing [7.462336024223669]
本稿では2段階の摂動に基づくプライバシー保護データ公開フレームワークを提案する。
まず、特定の事前定義されたプライバシとユーティリティの問題がパブリックドメインデータから学習される。
そして、学習した知識を活用して、データ所有者のデータを民営化したデータに正確に摂動させます。
論文 参考訳(メタデータ) (2020-05-09T05:32:46Z) - PrivEdge: From Local to Distributed Private Training and Prediction [43.02041269239928]
PrivEdgeはプライバシ保護機械学習(ML)のためのテクニック
PrivEdgeは、トレーニングのためにデータを提供するユーザのプライバシと、予測サービスを使用するユーザのプライバシを保護する。
PrivEdgeは、プライバシの保存や、プライベートイメージと非プライベートイメージの区別において、高い精度とリコールを持っていることを示す。
論文 参考訳(メタデータ) (2020-04-12T09:26:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。