論文の概要: Utility-aware Privacy-preserving Data Releasing
- arxiv url: http://arxiv.org/abs/2005.04369v1
- Date: Sat, 9 May 2020 05:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 06:43:25.694747
- Title: Utility-aware Privacy-preserving Data Releasing
- Title(参考訳): ユーティリティアウェアプライバシ保存データリリース
- Authors: Di Zhuang and J. Morris Chang
- Abstract要約: 本稿では2段階の摂動に基づくプライバシー保護データ公開フレームワークを提案する。
まず、特定の事前定義されたプライバシとユーティリティの問題がパブリックドメインデータから学習される。
そして、学習した知識を活用して、データ所有者のデータを民営化したデータに正確に摂動させます。
- 参考スコア(独自算出の注目度): 7.462336024223669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the big data era, more and more cloud-based data-driven applications are
developed that leverage individual data to provide certain valuable services
(the utilities). On the other hand, since the same set of individual data could
be utilized to infer the individual's certain sensitive information, it creates
new channels to snoop the individual's privacy. Hence it is of great importance
to develop techniques that enable the data owners to release privatized data,
that can still be utilized for certain premised intended purpose. Existing data
releasing approaches, however, are either privacy-emphasized (no consideration
on utility) or utility-driven (no guarantees on privacy). In this work, we
propose a two-step perturbation-based utility-aware privacy-preserving data
releasing framework. First, certain predefined privacy and utility problems are
learned from the public domain data (background knowledge). Later, our approach
leverages the learned knowledge to precisely perturb the data owners' data into
privatized data that can be successfully utilized for certain intended purpose
(learning to succeed), without jeopardizing certain predefined privacy
(training to fail). Extensive experiments have been conducted on Human Activity
Recognition, Census Income and Bank Marketing datasets to demonstrate the
effectiveness and practicality of our framework.
- Abstract(参考訳): ビッグデータ時代には、個々のデータを活用して特定の価値あるサービス(ユーティリティ)を提供するクラウドベースのデータ駆動アプリケーションが増えています。
一方、個人データの同じセットを使用して、個人の機密情報を推測することで、個人のプライバシをスヌープする新たなチャネルを作成することができる。
したがって、データ所有者が民営化されたデータをリリースできるようにする技術を開発することは非常に重要である。
しかし、既存のデータリリースアプローチは、プライバシー強調(ユーティリティを考慮せず)か、ユーティリティ駆動(プライバシに関する保証なし)である。
本研究では,2段階の摂動に基づくプライバシー保護型データリリースフレームワークを提案する。
まず、特定の事前定義されたプライバシーとユーティリティの問題は、パブリックドメインデータ(背景知識)から学習される。
その後、我々のアプローチでは、学習した知識を活用して、データ所有者のデータを、特定の目的(成功への学習)のためにうまく活用できる民営化されたデータに正確に摂動する。
本フレームワークの有効性と実用性を示すために,人的活動認識,センサス所得,銀行マーケティングのデータセットについて大規模な実験を行った。
関連論文リスト
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Towards a Data Privacy-Predictive Performance Trade-off [2.580765958706854]
分類タスクにおけるデータプライバシと予測性能のトレードオフの存在を評価する。
従来の文献とは異なり、プライバシーのレベルが高ければ高いほど、予測性能が向上することを確認した。
論文 参考訳(メタデータ) (2022-01-13T21:48:51Z) - Adversarial representation learning for synthetic replacement of private
attributes [0.7619404259039281]
第1ステップでは機密情報を除去し,第2ステップではこの情報を独立したランダムサンプルに置き換える,という2つのステップを含む,データ民営化のための新しいアプローチを提案する。
本手法は, より強い敵を騙すようにモデルを訓練することで, 強いプライバシを確保するために, 敵対表現学習を基盤としている。
論文 参考訳(メタデータ) (2020-06-14T22:07:19Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
本稿では,フェデレート機械学習を交通分野に適用する方法について述べる。
フェデレートラーニングは、ユーザのプライバシを尊重しつつ、プライバシに敏感なデータを処理可能にする方法だと考えています。
論文 参考訳(メタデータ) (2020-04-01T15:10:12Z) - Privacy-Preserving Boosting in the Local Setting [17.375582978294105]
機械学習では、複数のベース学習者と優れた学習者を組み合わせるように設計された最も一般的な方法の1つがブースティングである。
ビッグデータ時代において、個人や団体によって保持されるデータ(個人画像、閲覧履歴、国勢調査情報など)は、より機密性の高い情報を含む傾向にある。
ローカル微分プライバシーは、データ所有者に強力な保証を提供する効果的なプライバシー保護アプローチとして提案されている。
論文 参考訳(メタデータ) (2020-02-06T04:48:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。