論文の概要: A-MEM: Agentic Memory for LLM Agents
- arxiv url: http://arxiv.org/abs/2502.12110v1
- Date: Mon, 17 Feb 2025 18:36:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:03.859150
- Title: A-MEM: Agentic Memory for LLM Agents
- Title(参考訳): A-MEM:LDMエージェントのエージェントメモリ
- Authors: Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, Yongfeng Zhang,
- Abstract要約: 大規模言語モデル(LLM)エージェントは、歴史的経験を活用するためにメモリシステムを必要とする。
現在のメモリシステムは基本的なストレージと検索を可能にするが、洗練されたメモリ構造は欠如している。
本稿では, LLMエージェントに対して, エージェント方式で動的に記憶を整理できる新しいエージェントメモリシステムを提案する。
- 参考スコア(独自算出の注目度): 42.50876509391843
- License:
- Abstract: While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code is available at https://github.com/WujiangXu/AgenticMemory.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは複雑な現実世界のタスクに外部ツールを効果的に利用することができるが、過去の経験を活用するにはメモリシステムが必要である。
現在のメモリシステムは、基本的なストレージと検索を可能にするが、グラフデータベースを組み込もうとする最近の試みにもかかわらず、洗練されたメモリ構造が欠如している。
さらに、これらのシステムの固定操作と構造は、様々なタスクにまたがる適応性を制限する。
この制限に対処するために, LLMエージェントをエージェント的に動的に記憶を整理できる新しいエージェントメモリシステムを提案する。
Zettelkasten法の基本原理に従って,動的インデックス化とリンクによる相互接続型知識ネットワークを構築するメモリシステムを設計した。
新しいメモリを追加すると、コンテキスト記述、キーワード、タグを含む複数の構造化属性を含む包括的なノートを生成する。
その後、システムは過去の記憶を分析し、関連する関係を識別し、意味のある類似点が存在するリンクを確立する。
さらに、このプロセスはメモリの進化を可能にする。新しいメモリが統合されるにつれて、既存のメモリのコンテキスト表現や属性の更新をトリガーし、メモリネットワークはその理解を継続的に洗練することができる。
我々のアプローチは、Zettelkastenの構造化組織原則とエージェント駆動による意思決定の柔軟性を組み合わせることで、より適応的でコンテキスト対応のメモリ管理を可能にします。
6つの基礎モデルに関する実証実験は、既存のSOTAベースラインに対して優れた改善を示す。
ソースコードはhttps://github.com/WujiangXu/AgenticMemoryで入手できる。
関連論文リスト
- MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,大規模言語モデル(LLM)の拡張手法であるMemLLMを紹介する。
実験の結果, 言語モデリング, 特に知識集約型タスクにおいて, MemLLMはLLMの性能と解釈可能性を向上させることが示唆された。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - Online Adaptation of Language Models with a Memory of Amortized Contexts [82.02369596879817]
MAC(Memory of Amortized Contexts)は、大規模言語モデルのための効率的かつ効果的なオンライン適応フレームワークである。
MACとMACを組み合わせれば,検索の高速化など,一般的な代替手段の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-03-07T08:34:57Z) - PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification,
Retrieval, and Synthesis in Question Answering [27.815507347725344]
本研究は、意味記憶とエピソード記憶を組み合わせた革新的なQAデータセットであるPerLTQAを紹介する。
PerLTQAは2種類のメモリと、30文字に対して8,593質問のベンチマークを備えている。
本稿では,メモリ分類,メモリ検索,メモリ合成という3つの主要コンポーネントからなる,メモリ統合と生成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T04:09:53Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
本稿では,認知心理学のワーキングメモリフレームワークを大規模言語モデル(LLM)に適用する可能性について検討する。
エピソード間の記憶を維持するために、集中型ワーキングメモリハブとエピソディックバッファアクセスを取り入れた革新的なモデルが提案されている。
このアーキテクチャは、複雑なタスクと協調シナリオの間のニュアンス付きコンテキスト推論に対して、より継続的なものを提供することを目的としている。
論文 参考訳(メタデータ) (2023-12-22T05:59:00Z) - MemGPT: Towards LLMs as Operating Systems [50.02623936965231]
大規模言語モデル(LLM)はAIに革命をもたらしたが、限られたコンテキストウィンドウによって制約されている。
従来のオペレーティングシステムにおける階層型メモリシステムからのインスピレーションを引き出す技術である仮想コンテキスト管理を提案する。
私たちはMemGPTコードと実験のためのデータをhttps://memgpt.ai.comでリリースします。
論文 参考訳(メタデータ) (2023-10-12T17:51:32Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - Neural Storage: A New Paradigm of Elastic Memory [4.307341575886927]
コンピュータメモリ内のデータの保存と検索は、システム性能において大きな役割を果たす。
我々は、脳にインスパイアされた学習記憶パラダイムであるNeural Storage(NS)を導入し、メモリをフレキシブルなニューラルメモリネットワークとして構成する。
NSは2つの代表アプリケーションに対してメモリアクセス性能を大幅に改善する。
論文 参考訳(メタデータ) (2021-01-07T19:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。