FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
- URL: http://arxiv.org/abs/2502.12138v2
- Date: Wed, 19 Feb 2025 20:27:35 GMT
- Title: FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views
- Authors: Shangzhan Zhang, Jianyuan Wang, Yinghao Xu, Nan Xue, Christian Rupprecht, Xiaowei Zhou, Yujun Shen, Gordon Wetzstein,
- Abstract summary: We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images.
Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes.
- Score: 93.6881532277553
- License:
- Abstract: We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
Related papers
- Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos [15.532504015622159]
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics.
We tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos.
arXiv Detail & Related papers (2024-07-05T09:43:05Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
List is a novel neural architecture that leverages local and global image features to reconstruct geometric and topological structure of a 3D object from a single image.
We show the superiority of our model in reconstructing 3D objects from both synthetic and real-world images against the state of the art.
arXiv Detail & Related papers (2023-07-23T01:01:27Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
This work explores reconstructing general real-world objects from a few images without known camera poses or object categories.
The crux of our work is solving two fundamental 3D vision problems -- shape reconstruction and pose estimation.
Our method FORGE predicts 3D features from each view and leverages them in conjunction with the input images to establish cross-view correspondence.
arXiv Detail & Related papers (2022-12-08T18:59:02Z) - FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction [37.81077373162092]
Reconstructing an accurate 3D object model from a few image observations remains a challenging problem in computer vision.
We present FvOR, a learning-based object reconstruction method that predicts accurate 3D models given a few images with noisy input poses.
arXiv Detail & Related papers (2022-05-16T15:39:27Z) - 3D Magic Mirror: Clothing Reconstruction from a Single Image via a
Causal Perspective [96.65476492200648]
This research aims to study a self-supervised 3D clothing reconstruction method.
It recovers the geometry shape, and texture of human clothing from a single 2D image.
arXiv Detail & Related papers (2022-04-27T17:46:55Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - Shape and Viewpoint without Keypoints [63.26977130704171]
We present a learning framework that learns to recover the 3D shape, pose and texture from a single image.
We trained on an image collection without any ground truth 3D shape, multi-view, camera viewpoints or keypoint supervision.
We obtain state-of-the-art camera prediction results and show that we can learn to predict diverse shapes and textures across objects.
arXiv Detail & Related papers (2020-07-21T17:58:28Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.