論文の概要: HARBOR: Exploring Persona Dynamics in Multi-Agent Competition
- arxiv url: http://arxiv.org/abs/2502.12149v1
- Date: Mon, 17 Feb 2025 18:58:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:03.233848
- Title: HARBOR: Exploring Persona Dynamics in Multi-Agent Competition
- Title(参考訳): HARBOR:マルチエージェント競争におけるペルソナダイナミクスの探求
- Authors: Kenan Jiang, Li Xiong, Fei Liu,
- Abstract要約: 競合するマルチエージェント環境におけるLLMエージェントの成功に寄与する要因について検討する。
私たちの仕事は、複数のエージェントが家に入札する現実的な環境を作ることによって、古典的なオークションシナリオを拡張します。
私たちのテストベッドであるHARBORは、競争環境におけるマルチエージェントの理解を深めるための貴重なプラットフォームを提供します。
- 参考スコア(独自算出の注目度): 8.956637548200362
- License:
- Abstract: We investigate factors contributing to LLM agents' success in competitive multi-agent environments, using auctions as a testbed where agents bid to maximize profit. The agents are equipped with bidding domain knowledge, distinct personas that reflect item preferences, and a memory of auction history. Our work extends the classic auction scenario by creating a realistic environment where multiple agents bid on houses, weighing aspects such as size, location, and budget to secure the most desirable homes at the lowest prices. Particularly, we investigate three key questions: (a) How does a persona influence an agent's behavior in a competitive setting? (b) Can an agent effectively profile its competitors' behavior during auctions? (c) How can persona profiling be leveraged to create an advantage using strategies such as theory of mind? Through a series of experiments, we analyze the behaviors of LLM agents and shed light on new findings. Our testbed, called HARBOR, offers a valuable platform for deepening our understanding of multi-agent workflows in competitive environments.
- Abstract(参考訳): 競争力のあるマルチエージェント環境におけるLLMエージェントの成功に寄与する要因を,エージェントが利益を最大化するためのテストベッドとしてオークションを用いて検討した。
エージェントは、入札ドメイン知識、アイテムの好みを反映した個別のペルソナ、オークション履歴の記憶を備える。
私たちの仕事は、複数のエージェントが住宅に入札し、最も望ましい住宅を最低価格で確保するためのサイズ、場所、予算といった側面を重み付けする現実的な環境を作ることによって、古典的なオークションシナリオを拡張します。
特に,3つの重要な疑問について考察する。
(a)競争環境でのエージェントの行動にペルソナはどのような影響を及ぼすか。
ロ 競売中の競争相手の行動を効果的に表すことができるか。
(c)心の理論のような戦略を用いて、どのようにペルソナ・プロファイリングを活用すれば有利になるのか。
一連の実験を通して, LLM剤の挙動を解析し, 新たな研究結果に光を当てた。
私たちのテストベッドであるHARBORは、競争環境におけるマルチエージェントワークフローの理解を深めるための、貴重なプラットフォームを提供します。
関連論文リスト
- CoPS: Empowering LLM Agents with Provable Cross-Task Experience Sharing [70.25689961697523]
クロスタスク体験の共有と選択によるシーケンシャル推論を強化する一般化可能なアルゴリズムを提案する。
我々の研究は、既存のシーケンシャルな推論パラダイムのギャップを埋め、タスク間体験の活用の有効性を検証する。
論文 参考訳(メタデータ) (2024-10-22T03:59:53Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Measuring Bargaining Abilities of LLMs: A Benchmark and A Buyer-Enhancement Method [17.388837360641276]
本稿では,Bargainingタスクを非対称な不完全情報ゲームとして記述する。
これにより、Bargainタスクにおけるエージェントのパフォーマンスを定量的に評価することができます。
本稿では,OG-Narratorと呼ばれる新手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T13:36:58Z) - Fast Peer Adaptation with Context-aware Exploration [63.08444527039578]
マルチエージェントゲームにおける学習エージェントに対するピア識別報酬を提案する。
この報酬は、効果的な探索と迅速な適応のための文脈認識ポリシーを学ぶためのエージェントのモチベーションとなる。
我々は,競争力のある(クーンポーカー),協力的(PO-Overcooked),あるいは混合的(Predator-Prey-W)な(Pedator-Prey-W)ゲームを含む多種多様なテストベッドについて評価を行った。
論文 参考訳(メタデータ) (2024-02-04T13:02:27Z) - CompeteAI: Understanding the Competition Dynamics in Large Language Model-based Agents [43.46476421809271]
大規模言語モデル(LLM)は、様々なタスクを完了させるエージェントとして広く使われている。
本稿ではエージェント間の競合を研究するための一般的な枠組みを提案する。
そして、GPT-4を用いて仮想街をシミュレートする現実的な競争環境を構築する。
論文 参考訳(メタデータ) (2023-10-26T16:06:20Z) - Emergent Behaviors in Multi-Agent Target Acquisition [0.0]
追従回避ゲームにおける強化学習(RL)を用いたマルチエージェントシステム(MAS)のシミュレーションを行う。
我々は、RL訓練された追跡者のポリシーを2つの異なる(非RL)分析戦略に置き換えることで、異なる敵シナリオを作成する。
このアプローチの斬新さは、基礎となるデータ規則性を明らかにする影響力のある機能セットの作成を伴います。
論文 参考訳(メタデータ) (2022-12-15T15:20:58Z) - Moody Learners -- Explaining Competitive Behaviour of Reinforcement
Learning Agents [65.2200847818153]
競合シナリオでは、エージェントは動的環境を持つだけでなく、相手の行動に直接影響される。
エージェントのQ値の観察は通常、その振る舞いを説明する方法であるが、選択されたアクション間の時間的関係は示さない。
論文 参考訳(メタデータ) (2020-07-30T11:30:42Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。