Linear Diffusion Networks
- URL: http://arxiv.org/abs/2502.12381v4
- Date: Tue, 25 Mar 2025 18:52:09 GMT
- Title: Linear Diffusion Networks
- Authors: Jacob Fein-Ashley,
- Abstract summary: We present Linear Diffusion Networks (LDNs), a novel architecture that reinterprets sequential data processing as a unified diffusion process.<n>Our model integrates adaptive diffusion modules with localized nonlinear updates and a diffusion-inspired attention mechanism.<n> Experiments on benchmark sequence modeling tasks demonstrate that LDN delivers competitive performance across ImageNet and LRA tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Linear Diffusion Networks (LDNs), a novel architecture that reinterprets sequential data processing as a unified diffusion process. Our model integrates adaptive diffusion modules with localized nonlinear updates and a diffusion-inspired attention mechanism. This design enables efficient global information propagation while preserving fine-grained temporal details. LDN overcomes the limitations of conventional recurrent and transformer models by allowing full parallelization across time steps and supporting robust multi-scale temporal representations. Experiments on benchmark sequence modeling tasks demonstrate that LDN delivers competitive performance across ImageNet and LRA tasks.
Related papers
- Recurrent Stochastic Configuration Networks with Hybrid Regularization for Nonlinear Dynamics Modelling [3.8719670789415925]
Recurrent configuration networks (RSCNs) have shown great potential in modelling nonlinear dynamic systems with uncertainties.
This paper presents an RSCN with hybrid regularization to enhance both the learning capacity and generalization performance of the network.
arXiv Detail & Related papers (2024-11-26T03:06:39Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - Communication-Efficient Distributed Deep Learning via Federated Dynamic Averaging [1.4748100900619232]
Federated Dynamic Averaging (FDA) is a communication-efficient DDL strategy.
FDA reduces communication cost by orders of magnitude, compared to both traditional and cutting-edge algorithms.
arXiv Detail & Related papers (2024-05-31T16:34:11Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures [12.703947839247693]
Diffusion models, emerging as powerful deep generative tools, excel in various applications.
However, their remarkable generative performance is hindered by slow training and sampling.
This is due to the necessity of tracking extensive forward and reverse diffusion trajectories.
We present a multi-stage framework inspired by our empirical findings to tackle these challenges.
arXiv Detail & Related papers (2023-12-14T17:48:09Z) - Diffusion Models Without Attention [110.5623058129782]
Diffusion State Space Model (DiffuSSM) is an architecture that supplants attention mechanisms with a more scalable state space model backbone.
Our focus on FLOP-efficient architectures in diffusion training marks a significant step forward.
arXiv Detail & Related papers (2023-11-30T05:15:35Z) - Denoising Task Routing for Diffusion Models [19.373733104929325]
Diffusion models generate highly realistic images by learning a multi-step denoising process.
Despite the inherent connection between diffusion models and multi-task learning (MTL), there remains an unexplored area in designing neural architectures.
We present Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion model architectures to establish distinct information pathways.
arXiv Detail & Related papers (2023-10-11T02:23:18Z) - Bayesian Flow Networks [4.197165999892042]
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference.
Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models.
BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
arXiv Detail & Related papers (2023-08-14T09:56:35Z) - Multi-Flow Transmission in Wireless Interference Networks: A Convergent
Graph Learning Approach [9.852567834643292]
We introduce a novel algorithm called Dual-stage Interference-Aware Multi-flow Optimization of Network Data-signals (DIAMOND)
A centralized stage computes the multi-flow transmission strategy using a novel design of graph neural network (GNN) reinforcement learning (RL) routing agent.
Then, a distributed stage improves the performance based on a novel design of distributed learning updates.
arXiv Detail & Related papers (2023-03-27T18:49:47Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Diffusion Glancing Transformer for Parallel Sequence to Sequence
Learning [52.72369034247396]
We propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling.
DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.
arXiv Detail & Related papers (2022-12-20T13:36:25Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - HPSGD: Hierarchical Parallel SGD With Stale Gradients Featuring [18.8426865970643]
A novel Hierarchical Parallel SGD (HPSGD) strategy is proposed to boost the distributed training process of the deep neural network (DNN)
Experiments are conducted to demonstrate that the proposed HPSGD approach substantially boosts the distributed DNN training, reduces the disturbance of the stale gradients and achieves better accuracy in given fixed wall-time.
arXiv Detail & Related papers (2020-09-06T10:17:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.