Scientific Machine Learning of Flow Resistance Using Universal Shallow Water Equations with Differentiable Programming
- URL: http://arxiv.org/abs/2502.12396v1
- Date: Tue, 18 Feb 2025 00:07:14 GMT
- Title: Scientific Machine Learning of Flow Resistance Using Universal Shallow Water Equations with Differentiable Programming
- Authors: Xiaofeng Liu, Yalan Song,
- Abstract summary: We developed a universal SWEs solver, Hydrograd, for hybrid hydrodynamics modeling.
It can do accurate forward simulations, support automatic differentiation, and perform scientific machine learning for physics discovery.
- Score: 5.061700088495018
- License:
- Abstract: Shallow water equations (SWEs) are the backbone of most hydrodynamics models for flood prediction, river engineering, and many other water resources applications. The estimation of flow resistance, i.e., the Manning's roughness coefficient $n$, is crucial for ensuring model accuracy, and has been previously determined using empirical formulas or tables. To better account for temporal and spatial variability in channel roughness, inverse modeling of $n$ using observed flow data is more reliable and adaptable; however, it is challenging when using traditional SWE solvers. Based on the concept of universal differential equation (UDE), which combines physics-based differential equations with neural networks (NNs), we developed a universal SWEs (USWEs) solver, Hydrograd, for hybrid hydrodynamics modeling. It can do accurate forward simulations, support automatic differentiation (AD) for gradient-based sensitivity analysis and parameter inversion, and perform scientific machine learning for physics discovery. In this work, we first validated the accuracy of its forward modeling, then applied a real-world case to demonstrate the ability of USWEs to capture model sensitivity (gradients) and perform inverse modeling of Manning's $n$. Furthermore, we used a NN to learn a universal relationship between $n$, hydraulic parameters, and flow in a real river channel. Unlike inverse modeling using surrogate models, Hydrograd uses a two-dimensional SWEs solver as its physics backbone, which eliminates the need for data-intensive pretraining and resolves the generalization problem when applied to out-of-sample scenarios. This differentiable modeling approach, with seamless integration with NNs, provides a new pathway for solving complex inverse problems and discovering new physics in hydrodynamics.
Related papers
- SURF: A Generalization Benchmark for GNNs Predicting Fluid Dynamics [20.706469085872516]
Generalization is a key requirement for a general-purpose fluid simulator, which should adapt to different topologies, resolutions, or thermodynamic ranges.
We propose SURF, a benchmark designed to test the $textitgeneralization$ of learned graph-based fluid simulators.
We empirically demonstrate the applicability of SURF by thoroughly investigating the two state-of-the-art graph-based models.
arXiv Detail & Related papers (2023-10-30T22:12:35Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
Solving fluid dynamics equations often requires the use of closure relations that account for missing microphysics.
In our study, a partial differential equation simulator that is end-to-end differentiable is used to train judiciously placed neural networks.
We show that this method enables an equation based approach to reproduce non-linear, large Knudsen number plasma physics.
arXiv Detail & Related papers (2023-06-19T06:02:53Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers.
We present a novel, fully differentiable hybrid approach to FSI that combines a 2D numerical simulation for the deformable solid structure of the swimmer.
We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer.
arXiv Detail & Related papers (2022-03-30T15:21:44Z) - Differentiable, learnable, regionalized process-based models with
physical outputs can approach state-of-the-art hydrologic prediction accuracy [1.181206257787103]
We show that differentiable, learnable, process-based models (called delta models here) can approach the performance level of LSTM for the intensively-observed variable (streamflow) with regionalized parameterization.
We use a simple hydrologic model HBV as the backbone and use embedded neural networks, which can only be trained in a differentiable programming framework.
arXiv Detail & Related papers (2022-03-28T15:06:53Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
We explore the use of Neural Ordinary Differential Equations for fluid flow simulation.
Test problems we consider include incompressible flow around a cylinder and real-world applications of shallow water hydrodynamics in riverine and estuarine systems.
Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions.
arXiv Detail & Related papers (2021-04-22T19:20:47Z) - Multi-fidelity Generative Deep Learning Turbulent Flows [0.0]
In computational fluid dynamics, there is an inevitable trade off between accuracy and computational cost.
In this work, a novel multi-fidelity deep generative model is introduced for the surrogate modeling of high-fidelity turbulent flow fields.
The resulting surrogate is able to generate physically accurate turbulent realizations at a computational cost magnitudes lower than that of a high-fidelity simulation.
arXiv Detail & Related papers (2020-06-08T16:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.