論文の概要: Safe at the Margins: A General Approach to Safety Alignment in Low-Resource English Languages -- A Singlish Case Study
- arxiv url: http://arxiv.org/abs/2502.12485v2
- Date: Tue, 08 Apr 2025 04:50:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:27:26.156191
- Title: Safe at the Margins: A General Approach to Safety Alignment in Low-Resource English Languages -- A Singlish Case Study
- Title(参考訳): マルジンの安全--低資源英語における安全アライメントへの一般的なアプローチ--Singlish Case Study
- Authors: Isaac Lim, Shaun Khoo, Roy Ka-Wei Lee, Watson Chua, Jia Yi Goh, Jessica Foo,
- Abstract要約: 既存の安全アライメント手法は英語中心であり、有効性を制限している。
我々は,Singlishの毒性を低減するため,Slama 3-8B のSEA-Lion-v2.1-Instruct を調整するための Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), Kahneman-Tversky Optimization (KTO) を体系的に比較した。
以上の結果から, SFT+KTO は DPO よりも高い試料効率で安全性を向上し, さらに KTO-S を導入し, 改良された KL 分散正則化による安定性の向上を実現した。
- 参考スコア(独自算出の注目度): 3.314410266204751
- License:
- Abstract: Ensuring the safety of Large Language Models (LLMs) in diverse linguistic settings remains challenging, particularly for low-resource languages. Existing safety alignment methods are English-centric, limiting their effectiveness. We systematically compare Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Kahneman-Tversky Optimization (KTO) for aligning SEA-Lion-v2.1-Instruct, a Llama 3-8B variant, to reduce toxicity in Singlish. Our results show that SFT+KTO achieves superior safety alignment with higher sample efficiency than DPO. Additionally, we introduce KTO-S, which enhances stability via improved KL divergence regularization. Our approach reduces Singlish toxicity by 99\%, generalizes to TOXIGEN, and maintains strong performance on standard LLM benchmarks, providing a scalable framework for safer AI deployment in multilingual contexts.
- Abstract(参考訳): 多様な言語環境でのLLM(Large Language Models)の安全性を確保することは、特に低リソース言語では、依然として困難である。
既存の安全アライメント手法は英語中心であり、有効性を制限している。
我々は,Singlishの毒性を低減するため,Slama 3-8B のSEA-Lion-v2.1-Instruct を調整するための Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), Kahneman-Tversky Optimization (KTO) を体系的に比較した。
以上の結果から,SFT+KTOはDPOよりも高い試料効率で安全性を向上できることがわかった。
さらに、KTO-Sを導入し、改良されたKL分散正則化により安定性を向上させる。
我々のアプローチは、Singlish毒性を99\%削減し、TOXIGENに一般化し、標準LLMベンチマークで強力なパフォーマンスを維持し、マルチランガルコンテキストでのAIデプロイメントをより安全にするためのスケーラブルなフレームワークを提供する。
関連論文リスト
- Federated Fine-Tuning of Large Language Models: Kahneman-Tversky vs. Direct Preference Optimization [49.88778604259453]
我々は,大言語モデル (LLM) をフェデレート学習 (FL) 設定で微調整する方法として,KTO (Kahneman-Tversky Optimization) を評価した。
オリジナルの(KTOO)と再配布された(KTOR)構成の両方において、KTOはすべてのベンチマークで一貫してDPOを上回っている。
これらの知見は、KTOをFLの堅牢でスケーラブルな微調整方法として確立し、プライバシー保護、分散化、異種環境への採用を動機付けている。
論文 参考訳(メタデータ) (2025-02-20T01:44:21Z) - Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
特徴レベルの制約付き優先度最適化は、安定性を確保しつつアライメントプロセスを簡素化するために設計された新しい手法である。
提案手法は、訓練されたスパースオートエンコーダで活性化されるスパース機能と、逐次KL分散の品質を用いて効率を向上する。
論文 参考訳(メタデータ) (2024-11-12T07:54:13Z) - Revisiting Essential and Nonessential Settings of Evidential Deep Learning [70.82728812001807]
Evidential Deep Learning (EDL) は不確実性推定の新しい手法である。
本報告では,EDLの簡易かつ効果的な拡張型であるRe-EDLを提案する。
論文 参考訳(メタデータ) (2024-10-01T04:27:07Z) - Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis [20.023077870947024]
本研究ではコントラスト優先最適化(Contrastive Preference Optimization, CPO)に注目し, 翻訳品質に対する嗜好に基づくアライメントの影響を評価する実験を行う。
以上の結果から,CPO はアライメント指標に関して高品質なデータに対して常に Supervised Fine-Tuning (SFT) を上回りながら,下流評価指標間の不安定性をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-30T08:01:44Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
人間の嗜好を微調整した大型言語モデル(LLM)は、その能力向上に成功している。
しかし、微調整中のLLMの安全性確保は依然として重要な懸念事項である。
本稿では,BFPO(Bi-Factorial Preference Optimization)と呼ばれる教師あり学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-27T17:31:21Z) - ABC Align: Large Language Model Alignment for Safety & Accuracy [0.0]
大規模言語モデル(LLM)のための新しいアライメント手法ABC Alignを提案する。
合成データ生成、選好最適化、ポストトレーニングモデル量子化における最近のブレークスルーの上に構築された一連のデータとメソッドを組み合わせる。
我々の統一的なアプローチは、標準ベンチマークに対して測定されたように、バイアスを軽減し、推論能力を保ちながら精度を向上させる。
論文 参考訳(メタデータ) (2024-08-01T06:06:25Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Enhancing LLM Safety via Constrained Direct Preference Optimization [8.22888921018027]
我々は、最近提案されたAIシステムのためのDPO(Direct Preference Optimization)アプローチの新たな拡張であるConstrained DPO(C-DPO)を紹介する。
二重勾配降下法とDPOを併用することにより,強化学習を用いることなく,有用性と無害性との間のほぼ最適なトレードオフを同定する。
提案手法は, DPO に欠落している LLM に対して, 同じ安全性制約の下では, 極めて高い報酬を得られることを実証的に保証する。
論文 参考訳(メタデータ) (2024-03-04T20:39:24Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
表現レベルと勾配レベルの両方でNMTモデルを正規化するための共同手法を提案する。
提案手法は,オフターゲット翻訳の発生率の低減とゼロショット翻訳性能の向上に有効であることを示す。
論文 参考訳(メタデータ) (2021-09-10T10:52:21Z) - Demystify Optimization Challenges in Multilingual Transformers [21.245418118851884]
ロスランドスケープとパラメータの可塑性の観点から最適化課題を考察する。
不均衡なトレーニングデータは、高いリソース言語と低いリソース言語の間でタスクの干渉を引き起こす。
Curvature Aware Task Scaling (CATS) を提案し、特にリソースの少ない場合の最適化と一般化の両方を改善します。
論文 参考訳(メタデータ) (2021-04-15T17:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。