論文の概要: Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights
- arxiv url: http://arxiv.org/abs/2502.12521v1
- Date: Tue, 18 Feb 2025 04:11:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 20:12:08.788446
- Title: Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights
- Title(参考訳): LLM推論と計画のための推論時間計算:ベンチマークと考察
- Authors: Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, Shuiwang Ji,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の複雑な課題解決における推論と計画能力について検討する。
近年の推論時間技術の発展は,LLM推論を追加訓練なしで向上させる可能性を示している。
OpenAIのo1モデルは、マルチステップ推論と検証の新たな使用を通じて、有望なパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 49.42133807824413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks. Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training by exploring intermediate steps during inference. Notably, OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification. Here, we explore how scaling inference-time techniques can improve reasoning and planning, focusing on understanding the tradeoff between computational cost and performance. To this end, we construct a comprehensive benchmark, known as Sys2Bench, and perform extensive experiments evaluating existing inference-time techniques on eleven diverse tasks across five categories, including arithmetic reasoning, logical reasoning, common sense reasoning, algorithmic reasoning, and planning. Our findings indicate that simply scaling inference-time computation has limitations, as no single inference-time technique consistently performs well across all reasoning and planning tasks.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の複雑な課題解決における推論と計画能力について検討する。
推論時間技術の最近の進歩は、推論中の中間段階を探索することによって、追加のトレーニングを伴わずにLCM推論を強化する可能性を示している。
特に、OpenAIのo1モデルは、マルチステップ推論と検証の新たな使用を通じて、有望なパフォーマンスを示している。
本稿では,推論時間のスケーリングによって推論と計画が向上し,計算コストと性能のトレードオフを理解することに焦点を当てる。
そこで我々は、Sys2Benchと呼ばれる総合ベンチマークを構築し、算術的推論、論理的推論、常識的推論、アルゴリズム的推論、計画を含む5つのカテゴリにわたる11の多様なタスクにおける既存の推論時間技術を評価する広範な実験を行った。
この結果から,推論時間計算のスケーリングには制限があることが明らかとなった。
関連論文リスト
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
大規模言語モデル(LLM)推論におけるスケーリングの総合的な検討について述べる。
我々は、多段階推論と論理的整合性を改善する推論ステップにおけるスケーリングを分析する。
我々は、反復モデルの改善による最適化に焦点を当て、トレーニング可能な推論のスケーリングについて論じる。
論文 参考訳(メタデータ) (2025-04-02T23:51:27Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - PEA: Enhancing LLM Performance on Computational-Reasoning Tasks [21.13926189404758]
本研究では、計算推論問題と呼ばれる重要な推論タスクのクラスを記述し、解決するための形式的なアプローチを紹介する。
このフレームワークはこれらの問題を述語と列挙の構成要素に分解し、LLMを使って特定の述語、列挙、集約ルールに基づいてプログラムを合成する。
実験的な評価により、PEAはベンチマーク計算問題における基礎となるモデルの性能を大幅に向上し、平均精度が約50%向上し、効率が向上することがわかった。
論文 参考訳(メタデータ) (2025-02-16T00:27:05Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - Multi-Step Time Series Inference Agent for Reasoning and Automated Task Execution [19.64976935450366]
本稿では,合成推論と時系列解析の精度の両方を必要とする多段階時系列推論という新しいタスクを提案する。
テキスト内学習、自己補正、プログラム支援実行を統合することで、提案手法は正確かつ解釈可能な結果を保証する。
論文 参考訳(メタデータ) (2024-10-05T06:04:19Z) - On the Empirical Complexity of Reasoning and Planning in LLMs [29.588100727466976]
Chain-of-Thought(CoT)、tree-of-Thought(ToT)、および関連するテクニックは、大規模言語モデル(LLM)を用いた複雑な推論タスクにおいて、実際に驚くほどうまく機能する。
この研究は、実験ケーススタディを実行し、パフォーマンスの利点を機械学習における十分に確立されたサンプルと計算の複雑さの原則に結びつけることによって、根本的な理由を追求する。
論文 参考訳(メタデータ) (2024-04-17T03:34:27Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
大規模言語モデル(LLM)は、視覚的推論のような複雑な推論タスクのためのコードライクな計画を生成することができる。
ワンストップ推論 (fast) とツリー・オブ・シント (slow) を統合した階層型計画探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T16:21:40Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。