Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization
- URL: http://arxiv.org/abs/2409.03811v2
- Date: Wed, 05 Feb 2025 09:49:54 GMT
- Title: Parallel AutoRegressive Models for Multi-Agent Combinatorial Optimization
- Authors: Federico Berto, Chuanbo Hua, Laurin Luttmann, Jiwoo Son, Junyoung Park, Kyuree Ahn, Changhyun Kwon, Lin Xie, Jinkyoo Park,
- Abstract summary: We propose a reinforcement learning framework designed to construct high-quality solutions for multi-agent tasks efficiently.
PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities.
We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency.
- Score: 17.392822956504848
- License:
- Abstract: Combinatorial optimization problems involving multiple agents are notoriously challenging due to their NP-hard nature and the necessity for effective agent coordination. Despite advancements in learning-based methods, existing approaches often face critical limitations, including suboptimal agent coordination, poor generalizability, and high computational latency. To address these issues, we propose Parallel AutoRegressive Combinatorial Optimization (PARCO), a reinforcement learning framework designed to construct high-quality solutions for multi-agent combinatorial tasks efficiently. To this end, PARCO integrates three key components: (1) transformer-based communication layers to enable effective agent collaboration during parallel solution construction, (2) a multiple pointer mechanism for low-latency, parallel agent decision-making, and (3) priority-based conflict handlers to resolve decision conflicts via learned priorities. We evaluate PARCO in multi-agent vehicle routing and scheduling problems where our approach outperforms state-of-the-art learning methods and demonstrates strong generalization ability and remarkable computational efficiency. Code available at: https://github.com/ai4co/parco.
Related papers
- Learning to Solve the Min-Max Mixed-Shelves Picker-Routing Problem via Hierarchical and Parallel Decoding [0.3867363075280544]
The Mixed-Shelves Picker Routing Problem (MSPRP) is a fundamental challenge in logistics, where pickers must navigate a mixed-shelves environment to retrieve SKUs efficiently.
We propose a novel hierarchical and parallel decoding approach for solving the min-max variant of the MSPRP via multi-agent reinforcement learning.
Experiments show state-of-the-art performance in both solution quality and inference speed, particularly for large-scale and out-of-distribution instances.
arXiv Detail & Related papers (2025-02-14T15:42:30Z) - A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
Coalition structure generation is a fundamental computational problem in multiagent systems.
We develop SALDAE, a multiagent path finding algorithm for CSG that operates on a graph of coalition structures.
arXiv Detail & Related papers (2025-02-14T15:21:27Z) - Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
This paper presents a hierarchical reinforcement learning (RL) approach to address the agent grouping or pairing problem in cooperative multi-agent systems.
By employing a hierarchical RL framework, we distinguish between high-level decisions of grouping and low-level agents' actions.
We incorporate permutation-in neural networks to handle the homogeneity and cooperation among agents, enabling effective coordination.
arXiv Detail & Related papers (2025-01-11T14:22:10Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Accelerate Presolve in Large-Scale Linear Programming via Reinforcement
Learning [92.31528918811007]
We propose a simple and efficient reinforcement learning framework -- namely, reinforcement learning for presolve (RL4Presolve) -- to tackle (P1)-(P3) simultaneously.
Experiments on two solvers and eight benchmarks (real-world and synthetic) demonstrate that RL4Presolve significantly and consistently improves the efficiency of solving large-scale LPs.
arXiv Detail & Related papers (2023-10-18T09:51:59Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
Multi-agent reinforcement learning often suffers from the exponentially larger action space caused by a large number of agents.
We propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for the fully cooperative multi-agent problems.
arXiv Detail & Related papers (2021-10-14T10:43:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.