論文の概要: A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem
- arxiv url: http://arxiv.org/abs/2502.12617v2
- Date: Tue, 18 Mar 2025 16:08:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:12:50.516159
- Title: A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem
- Title(参考訳): 航空機着陸問題のためのグラフ強化深部強化学習フレームワーク
- Authors: Vatsal Maru,
- Abstract要約: 航空機着陸問題(英: Aircraft Landing Problem、ALP)は、航空機の輸送と管理において難しい問題の一つである。
本稿では,グラフニューラルネットワークとアクター批判アーキテクチャを組み合わせてALPに対処する,新しい深層強化学習フレームワークを提案する。
その結果、学習アルゴリズムは異なる問題集合上でテストでき、その結果は研究アルゴリズムの運用と競合することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Aircraft Landing Problem (ALP) is one of the challenging problems in aircraft transportation and management. The challenge is to schedule the arriving aircraft in a sequence so that the cost and delays are optimized. There are various solution approaches to solving this problem, most of which are based on operations research algorithms and meta-heuristics. Although traditional methods perform better on one or the other factors, there remains a problem of solving real-time rescheduling and computational scalability altogether. This paper presents a novel deep reinforcement learning (DRL) framework that combines graph neural networks with actor-critic architectures to address the ALP. This paper introduces three key contributions: A graph-based state representation that efficiently captures temporal and spatial relationships between aircraft, a specialized actor-critic architecture designed to handle multiple competing objectives in landing scheduling, and a runway balance strategy that ensures efficient resource utilization while maintaining safety constraints. The results show that the trained algorithm can be tested on different problem sets and the results are competitive to operation research algorithms. The experimental results on standard benchmark data sets demonstrate a 99.95% reduction in computational time compared to Mixed Integer Programming (MIP) and 38% higher runway throughput over First Come First Serve (FCFS) approaches. Therefore, the proposed solution is competitive to traditional approaches and achieves substantial advancements. Notably, it does not require retraining, making it particularly suitable for industrial deployment. The frameworks capability to generate solutions within 1 second enables real-time rescheduling, addressing critical requirements of air traffic management.
- Abstract(参考訳): 航空機着陸問題(英: Aircraft Landing Problem、ALP)は、航空機の輸送と管理において難しい問題の一つである。
課題は、コストと遅延が最適化されるように、到着した航空機を連続的にスケジュールすることである。
この問題には様々な解法があるが、そのほとんどは演算研究アルゴリズムとメタヒューリスティックスに基づいている。
従来の手法は1つまたは他の要因でよく機能するが、リアルタイムのスケジューリングと計算のスケーラビリティを完全に解決する問題は残されている。
本稿では,グラフニューラルネットワークとアクター・クリティカルなアーキテクチャを組み合わせてALPに対処する,新しい深層強化学習(DRL)フレームワークを提案する。
本稿では,航空機間の時間的・空間的関係を効率的に把握するグラフベースの状態表現,着陸スケジューリングにおける複数の競合する目的を扱うための特殊なアクター・クリティカル・アーキテクチャ,安全制約を維持しつつ資源利用の効率化を図るランウェイバランス・ストラテジーの3つを紹介する。
その結果、学習アルゴリズムは異なる問題集合上でテストでき、研究アルゴリズムの運用に競争力があることがわかった。
標準ベンチマークデータセットの実験結果は、MIP(Mixed Integer Programming)と比較して計算時間を99.95%削減し、FCFS(First Come First Serve)アプローチよりも38%高いランウェイスループットを示した。
したがって、提案手法は従来のアプローチと競合し、かなりの進歩を遂げる。
特に、再訓練は必要とせず、特に産業展開に適している。
1秒以内にソリューションを生成するフレームワークは、航空交通管理の重要な要件に対処して、リアルタイムのスケジューリングを可能にする。
関連論文リスト
- A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
結合構造生成はマルチエージェントシステムにおける基本的な計算問題である。
我々はCSGの多エージェントパス探索アルゴリズムであるSALDAEを開発し、連立構造グラフ上で運用する。
論文 参考訳(メタデータ) (2025-02-14T15:21:27Z) - A Hybrid Tabu Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling [0.0]
Dissertationは、滑走路運用スケジューリングのためのシミュレーションベースの最適化(SbO)アプローチを提案することで、航空交通フロー管理の課題に対処する。
目的は、遅延、燃料消費、環境への影響を最小限に抑えつつ、空港の容量利用を最適化することである。
提案するSbOフレームワークは,滑走路条件を扱う離散イベントシミュレーションモデルと,最適解を特定するためのハイブリッドタブ・散乱探索アルゴリズムを統合した。
論文 参考訳(メタデータ) (2025-02-08T14:42:05Z) - Dependency-Aware CAV Task Scheduling via Diffusion-Based Reinforcement Learning [12.504232513881828]
動的無人航空機支援型コネクテッド自動運転車(CAV)のための新しい依存性を考慮したタスクスケジューリング手法を提案する。
平均タスク完了時間を最小化することを目的として,共同スケジューリング優先度とサブタスク割り当て最適化問題を定式化する。
本稿では,Synthetic DDQNをベースとしたSubtasks Schedulingという拡散型強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-27T11:07:31Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
本稿では,艦隊スケジューリング問題の包括的最適化について述べる。
また、代替ソリューションのアプローチの必要性も認識している。
新しい模倣アプローチは、目に見えない最悪のシナリオにおいて、パフォーマンスと顕著な改善を実現する。
論文 参考訳(メタデータ) (2024-07-16T18:51:24Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
本研究の目的は、最適化問題に対処する機械学習(ML)を用いた革新的なアプローチを開発することである。
1) 粗粒スケジューラとしての解法, 2) 解緩和, 3) ILPによる正確な解法の3つのステップを含む新しい2段階のRL-to-ILPスケジューリングフレームワークを導入する。
提案フレームワークは, 正確なスケジューリング手法と比較して, 最大128ドルの高速化を実現しつつ, 同一のスケジューリング性能を示す。
論文 参考訳(メタデータ) (2023-08-19T15:52:43Z) - Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows [58.891409372784516]
本稿では,Roulette Wheel Method (RWPSO) を用いた新しいPSO手法を提案する。
RWPSOのSolomon VRPTWベンチマークデータセットを用いた実験は、RWPSOが文学の他の最先端アルゴリズムと競合していることを示している。
論文 参考訳(メタデータ) (2023-06-04T09:18:02Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。