論文の概要: A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility
- arxiv url: http://arxiv.org/abs/2407.12113v2
- Date: Thu, 5 Sep 2024 17:01:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 02:06:01.191325
- Title: A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility
- Title(参考訳): 都市空調における信頼性・リアルタイムフリートスケジューリングのためのグラフベース逆模倣学習フレームワーク
- Authors: Prithvi Poddar, Steve Paul, Souma Chowdhury,
- Abstract要約: 本稿では,艦隊スケジューリング問題の包括的最適化について述べる。
また、代替ソリューションのアプローチの必要性も認識している。
新しい模倣アプローチは、目に見えない最悪のシナリオにおいて、パフォーマンスと顕著な改善を実現する。
- 参考スコア(独自算出の注目度): 5.19664437943693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Urban Air Mobility (UAM) presents the scope for a transformative shift in the domain of urban transportation. However, its widespread adoption and economic viability depends in part on the ability to optimally schedule the fleet of aircraft across vertiports in a UAM network, under uncertainties attributed to airspace congestion, changing weather conditions, and varying demands. This paper presents a comprehensive optimization formulation of the fleet scheduling problem, while also identifying the need for alternate solution approaches, since directly solving the resulting integer nonlinear programming problem is computationally prohibitive for daily fleet scheduling. Previous work has shown the effectiveness of using (graph) reinforcement learning (RL) approaches to train real-time executable policy models for fleet scheduling. However, such policies can often be brittle on out-of-distribution scenarios or edge cases. Moreover, training performance also deteriorates as the complexity (e.g., number of constraints) of the problem increases. To address these issues, this paper presents an imitation learning approach where the RL-based policy exploits expert demonstrations yielded by solving the exact optimization using a Genetic Algorithm. The policy model comprises Graph Neural Network (GNN) based encoders that embed the space of vertiports and aircraft, Transformer networks to encode demand, passenger fare, and transport cost profiles, and a Multi-head attention (MHA) based decoder. Expert demonstrations are used through the Generative Adversarial Imitation Learning (GAIL) algorithm. Interfaced with a UAM simulation environment involving 8 vertiports and 40 aircrafts, in terms of the daily profits earned reward, the new imitative approach achieves better mean performance and remarkable improvement in the case of unseen worst-case scenarios, compared to pure RL results.
- Abstract(参考訳): UAM(Urban Air Mobility)の出現は、都市交通の領域における変革的シフトの範囲を示す。
しかし、その普及と経済性は、空域の混雑、気象条件の変化、および様々な要求に起因する不確実性の下で、UAMネットワーク内のバーチポートを横断する航空機の艦隊を最適にスケジュールする能力に部分的に依存している。
そこで本論文では, 整数型非線形計画問題の直接解法は, 日次スケジューリングでは計算が不可能であるため, フラッグスケジューリング問題の総合的な最適化を図りながら, 代替解法の必要性を同定する。
従来の研究は、(グラフ)強化学習(RL)アプローチを用いて、艦隊スケジューリングのためのリアルタイム実行可能なポリシーモデルを訓練することの有効性を示した。
しかし、そのようなポリシーは、アウト・オブ・ディストリビューションのシナリオやエッジのケースでは不安定であることが多い。
さらに、問題の複雑さ(例えば制約の数)が増加するにつれて、トレーニングパフォーマンスも悪化する。
これらの問題に対処するために,RLに基づくポリシーは,遺伝的アルゴリズムを用いて正確な最適化を解くことで得られる専門家の実証を活用できる模擬学習手法を提案する。
ポリシーモデルは、バーティポートと航空機の空間を埋め込むグラフニューラルネットワーク(GNN)ベースのエンコーダ、需要、乗客運賃、輸送コストプロファイルをエンコードするトランスフォーマーネットワーク、マルチヘッドアテンション(MHA)ベースのデコーダを含む。
専門家によるデモンストレーションは、GAIL(Generative Adversarial Imitation Learning)アルゴリズムを通じて行われている。
8機と40機からなるUAMシミュレーション環境と対話し、毎日の利益が報われるという観点から、新しい模倣アプローチは、純粋なRL結果と比較して、目に見えない最悪のシナリオの場合において、より良い平均性能と顕著な改善を達成する。
関連論文リスト
- Graph Learning-based Fleet Scheduling for Urban Air Mobility under
Operational Constraints, Varying Demand & Uncertainties [5.248564173595024]
本稿では,電気航空機のスケジュールと目的地のオンライン計画におけるグラフ強化学習手法を提案する。
それは、時間的な需要、垂直離着陸能力、航空機の容量および空域安全ガイドラインに関する制約、離陸遅延、天候によるルート閉鎖、予想外の航空機のダウンタイムに関する不確実性を考える。
論文 参考訳(メタデータ) (2024-01-09T23:46:22Z) - Real-time Control of Electric Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning [14.073588678179865]
エレクトロニック・モビリティ・オン・デマンド(E-AMoD)は、いくつかのリアルタイムな意思決定を行う必要がある。
強化学習のレンズによるE-AMoD制御問題を提案する。
本稿では,拡張性を大幅に向上し,性能の最適化に優れるグラフネットワークベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-09T22:57:21Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing [22.09756306579992]
UAVはエッジコンピューティング環境でインテリジェントなサーバとして機能し、通信システムのスループットを最大化するために飛行軌道を最適化する。
深部強化学習(DRL)に基づく軌道最適化アルゴリズムは、複雑な地形特徴と不十分な訓練データにより、訓練性能が低下する可能性がある。
本研究は,マルチUAV軌道最適化のための新しい手法,すなわちパーソナライズされた深部強化学習(PF-DRL)を提案する。
論文 参考訳(メタデータ) (2023-09-05T12:54:40Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
フォグ/エッジコンピューティング環境において, DRL(Deep Reinforcement Learning)に基づく配置技術が提案されている。
IMPortance weighted Actor-Learner Architectures (IMPALA) に基づくアクタ批判に基づく分散アプリケーション配置手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T11:25:03Z) - AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free
Deep Reinforcement Learning and Change Point Detection [34.77250498401055]
本稿では,車いすによる乗り合い環境における日中パターンを認識・適応できる適応型モデルフリー深部強化手法を提案する。
本論文では, 配車における適応論理に加えて, 動的かつ需要に応じた車両通行者マッチングと経路計画の枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-01T02:14:01Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。