論文の概要: \textit{One Size doesn't Fit All}: A Personalized Conversational Tutoring Agent for Mathematics Instruction
- arxiv url: http://arxiv.org/abs/2502.12633v1
- Date: Tue, 18 Feb 2025 08:24:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:44.156628
- Title: \textit{One Size doesn't Fit All}: A Personalized Conversational Tutoring Agent for Mathematics Instruction
- Title(参考訳): \textit{One Size do not Fit All}: a Personalized Conversational Tutoring Agent for Mathematics Instruction
- Authors: Ben Liu, Jihan Zhang, Fangquan Lin, Xu Jia, Min Peng,
- Abstract要約: 数学教育のためのtextbfPersontextbfAlized textbfConversational tutoring agtextbfEnt (PACE) を提案する。
PACEは、各生徒のペルソナに合わせて、フェーダーとシルバーマンの学習スタイルモデルに基づいて、生徒の学習スタイルをシミュレートする。
学生の理解を深めるために、PACEはソクラテス教育法を用いて即時フィードバックを提供し、深い思考を促進する。
- 参考スコア(独自算出の注目度): 23.0134120158482
- License:
- Abstract: Large language models (LLMs) have been increasingly employed in various intelligent educational systems, simulating human tutors to facilitate effective human-machine interaction. However, previous studies often overlook the significance of recognizing and adapting to individual learner characteristics. Such adaptation is crucial for enhancing student engagement and learning efficiency, particularly in mathematics instruction, where diverse learning styles require personalized strategies to promote comprehension and enthusiasm. In this paper, we propose a \textbf{P}erson\textbf{A}lized \textbf{C}onversational tutoring ag\textbf{E}nt (PACE) for mathematics instruction. PACE simulates students' learning styles based on the Felder and Silverman learning style model, aligning with each student's persona. In this way, our PACE can effectively assess the personality of students, allowing to develop individualized teaching strategies that resonate with their unique learning styles. To further enhance students' comprehension, PACE employs the Socratic teaching method to provide instant feedback and encourage deep thinking. By constructing personalized teaching data and training models, PACE demonstrates the ability to identify and adapt to the unique needs of each student, significantly improving the overall learning experience and outcomes. Moreover, we establish multi-aspect evaluation criteria and conduct extensive analysis to assess the performance of personalized teaching. Experimental results demonstrate the superiority of our model in personalizing the educational experience and motivating students compared to existing methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は、効果的な人間と機械の相互作用を促進するために、人間のチューターをシミュレートし、様々なインテリジェントな教育システムにますます採用されている。
しかし、過去の研究では、個々の学習者の特性を認識し、適応することの重要性をしばしば見落としていた。
このような適応は、特に数学の指導において、理解と熱意を促進するためにパーソナライズされた戦略を必要とする学生のエンゲージメントと学習効率を高めるために不可欠である。
本論文では,数学教育のための言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語学習用言語「ag\textbf{E}nt(PACE)」を提案する。
PACEは、各生徒のペルソナに合わせて、フェーダーとシルバーマンの学習スタイルモデルに基づいて、生徒の学習スタイルをシミュレートする。
このようにして、PACEは学生の個性を効果的に評価し、独自の学習スタイルに共鳴する個別の教育戦略を開発することができる。
学生の理解を深めるために、PACEはソクラテス教育法を用いて即時フィードバックを提供し、深い思考を促進する。
パーソナライズされた教育データとトレーニングモデルを構築することで、PACEは各学生のユニークなニーズを識別し、適応する能力を示し、全体的な学習経験と成果を大幅に改善する。
さらに、多視点評価基準を確立し、パーソナライズされた授業のパフォーマンスを評価するために広範囲な分析を行う。
実験の結果,既存の手法と比較して,教育経験をパーソナライズし,学生を動機づけるモデルが優れていることが示された。
関連論文リスト
- Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
GRADEは、教育と表現的アライメントを研究するための新しい制御された実験環境である。
学生との表現的整合性が向上し,生徒の学習成果が向上することがわかった。
しかし、この効果は、教えられているクラスのサイズと表現の多様性によって中和される。
論文 参考訳(メタデータ) (2024-06-06T17:48:24Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
本稿ではAdapTと呼ばれる一連のモデルと評価手法を紹介する。
AToMは、学生の過去の信念を共同で推論し、将来の信念の正しさを最適化する適応教育の新しい確率論的モデルである。
本研究は,適応型学習課題の難しさと,それを解決するための学習適応モデルの可能性を両立させるものである。
論文 参考訳(メタデータ) (2024-05-07T17:05:27Z) - Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning [25.90420385230675]
パーソナライズされた教育の追求は、知的学習システムの開発におけるLarge Language Models(LLM)の統合につながった。
我々の研究は、このアプローチの根本的な課題を明らかにする:学生データパラドックス」
このパラドックスは、学習者の行動を理解するために学生データに基づいて訓練されたLLMが、故意に自身の事実的知識と推論能力を損なうときに現れる。
論文 参考訳(メタデータ) (2024-04-23T15:57:55Z) - Personality-aware Student Simulation for Conversational Intelligent Tutoring Systems [34.760230622675365]
Intelligent Tutoring Systems(ITS)は、パーソナライズされたセルフペースの学習体験を提供する。
大規模言語モデル(LLM)の出現により、より優れた人間と機械の相互作用が可能になる。
LLMは、与えられた言語能力と性格特性に応じて、多様な学生の反応を生成することができる。
論文 参考訳(メタデータ) (2024-04-10T06:03:13Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - Personalization, Cognition, and Gamification-based Programming Language
Learning: A State-of-the-Art Systematic Literature Review [0.13053649021965597]
計算機科学におけるプログラミングコースは、多くの学生にとって最初のコンピュータプログラミング入門であることが多いため、重要である。
現在の大学講堂でよく使われている学習モデルでは、モチベーションや学習への参加が欠如していることが多い。
本稿では,プログラミングコースにおける効果的パーソナライズされたゲーミフィケーション介入の設計と実装に関する知見を提供する。
論文 参考訳(メタデータ) (2023-09-05T05:14:23Z) - Adaptive and Personalized Exercise Generation for Online Language
Learning [39.28263461783446]
オンライン言語学習のための適応的でパーソナライズされたエクササイズ生成の新しい課題について研究する。
学習履歴から各生徒の進化した知識状態を推定する知識追跡モデルを組み合わせる。
我々はDuolingoの実際の学習者インタラクションデータに基づいてモデルをトレーニングし、評価する。
論文 参考訳(メタデータ) (2023-06-04T20:18:40Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
近年、研究者は、異なる人物の再識別データセット間のドメインギャップを減らすために、教師学生フレームワークを彼らの手法に活用することを提案している。
近年の教員中心の枠組みに基づく手法に着想を得て,異なる側面から人間の学習過程を模倣するためのさらなる探究を提案する。
論文 参考訳(メタデータ) (2021-11-28T01:14:29Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
学生のスコアを正確に予測するためのグラフベースのエクササイズ・アンド・ナレッジ・アウェアラーニングネットワークを提案する。
我々は,エクササイズとナレッジ概念の熟達度を学習し,エクササイズとナレッジ概念の2倍の効果をモデル化する。
論文 参考訳(メタデータ) (2021-06-01T06:53:17Z) - Interaction-limited Inverse Reinforcement Learning [50.201765937436654]
本稿では,教師の視点をカバーしたカリキュラム逆強化学習(CIRL)と,学習者の視点に着目した自己適用逆強化学習(SPIRL)の2つの訓練戦略を提案する。
シミュレーション実験と実ロボットを用いた実験により,CIRLの無作為教師やSPIRLのバッチ学習者よりも高速な学習が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-01T12:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。