Navigating Demand Uncertainty in Container Shipping: Deep Reinforcement Learning for Enabling Adaptive and Feasible Master Stowage Planning
- URL: http://arxiv.org/abs/2502.12756v3
- Date: Thu, 20 Mar 2025 15:18:36 GMT
- Title: Navigating Demand Uncertainty in Container Shipping: Deep Reinforcement Learning for Enabling Adaptive and Feasible Master Stowage Planning
- Authors: Jaike van Twiller, Yossiri Adulyasak, Erick Delage, Djordje Grbic, Rune Møller Jensen,
- Abstract summary: Reinforcement learning (RL) has shown promise in solving various optimization problems.<n>In this work, we focus on using RL in container shipping, by dealing with the critical challenge of master stowage planning.
- Score: 3.565151496245487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has shown promise in solving various combinatorial optimization problems. However, conventional RL faces challenges when dealing with real-world constraints, especially when action space feasibility is explicit and dependent on the corresponding state or trajectory. In this work, we focus on using RL in container shipping, often considered the cornerstone of global trade, by dealing with the critical challenge of master stowage planning. The main objective is to maximize cargo revenue and minimize operational costs while navigating demand uncertainty and various complex operational constraints, namely vessel capacity and stability, which must be dynamically updated along the vessel's voyage. To address this problem, we implement a deep reinforcement learning framework with feasibility projection to solve the master stowage planning problem (MPP) under demand uncertainty. The experimental results show that our architecture efficiently finds adaptive, feasible solutions for this multi-stage stochastic optimization problem, outperforming traditional mixed-integer programming and RL with feasibility regularization. Our AI-driven decision-support policy enables adaptive and feasible planning under uncertainty, optimizing operational efficiency and capacity utilization while contributing to sustainable and resilient global supply chains.
Related papers
- Deep Reinforcement Learning for Day-to-day Dynamic Tolling in Tradable Credit Schemes [4.844463457863053]
Tradable credit schemes (TCS) are an increasingly studied alternative to congestion pricing.
Modeling TCS to aid future design and implementation is associated with challenges involving user and market behaviors, demand-supply dynamics, and control mechanisms.
arXiv Detail & Related papers (2025-04-10T19:04:28Z) - AI2STOW: End-to-End Deep Reinforcement Learning to Construct Master Stowage Plans under Demand Uncertainty [0.0]
This article proposes AI2STOW, an end-to-end deep reinforcement learning model with feasibility projection and an action mask to create master plans under demand uncertainty.
Our experimental results demonstrate that AI2STOW outperforms baseline methods from reinforcement learning and programming in objective performance and computational efficiency.
arXiv Detail & Related papers (2025-04-06T12:45:25Z) - Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for inland waterway transport (IWT) within an autonomous shipping simulator.
We show that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training.
arXiv Detail & Related papers (2024-11-07T17:55:07Z) - Memory-Enhanced Neural Solvers for Efficient Adaptation in Combinatorial Optimization [6.713974813995327]
We present MEMENTO, an approach that leverages memory to improve the adaptation of neural solvers at time.
We successfully train all RL auto-regressive solvers on large instances, and show that MEMENTO can scale and is data-efficient.
Overall, MEMENTO enables to push the state-of-the-art on 11 out of 12 evaluated tasks.
arXiv Detail & Related papers (2024-06-24T08:18:19Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sys is a framework that harnesses optimal transport theory for data repair under Conditional Independence (CI) constraints.
We develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data.
arXiv Detail & Related papers (2024-03-04T18:23:55Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to fluctuations in dynamic prices, demand consumption, and renewable-based energy generation.
By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' nature.
We propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation.
arXiv Detail & Related papers (2023-07-26T17:12:04Z) - Reinforcement Learning for Flexibility Design Problems [77.37213643948108]
We develop a reinforcement learning framework for flexibility design problems.
Empirical results show that the RL-based method consistently finds better solutions than classical methods.
arXiv Detail & Related papers (2021-01-02T02:44:39Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.