論文の概要: The Relationship Between Head Injury and Alzheimer's Disease: A Causal Analysis with Bayesian Networks
- arxiv url: http://arxiv.org/abs/2502.12898v1
- Date: Tue, 18 Feb 2025 14:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:18.812419
- Title: The Relationship Between Head Injury and Alzheimer's Disease: A Causal Analysis with Bayesian Networks
- Title(参考訳): 頭部外傷とアルツハイマー病との関連性:ベイジアンネットワークを用いた因果解析
- Authors: Andrei Lixandru,
- Abstract要約: 本研究は、頭部外傷とアルツハイマー病発症リスクの因果関係について検討した。
頭部外傷, 記憶障害, 心血管疾患, 糖尿病など, 主要な医療履歴変数について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study examines the potential causal relationship between head injury and the risk of developing Alzheimer's disease (AD) using Bayesian networks and regression models. Using a dataset of 2,149 patients, we analyze key medical history variables, including head injury history, memory complaints, cardiovascular disease, and diabetes. Logistic regression results suggest an odds ratio of 0.88 for head injury, indicating a potential but statistically insignificant protective effect against AD. In contrast, memory complaints exhibit a strong association with AD, with an odds ratio of 4.59. Linear regression analysis further confirms the lack of statistical significance for head injury (coefficient: -0.0245, p = 0.469) while reinforcing the predictive importance of memory complaints. These findings highlight the complex interplay of medical history factors in AD risk assessment and underscore the need for further research utilizing larger datasets and advanced causal modeling techniques.
- Abstract(参考訳): 本研究では,頭部外傷とアルツハイマー病(AD)発症リスクの因果関係について,ベイジアンネットワークと回帰モデルを用いて検討した。
2,149人の患者のデータセットを用いて、頭部外傷歴、記憶障害、心血管疾患、糖尿病などの主要な医療履歴変数を分析した。
ロジスティック回帰の結果は頭部外傷に対するオッズ比0.88を示し、ADに対する潜在的に統計的に重要でない防御効果を示している。
対照的に、記憶障害はADと強く関連しており、確率比は4.59である。
線形回帰分析により、頭部損傷の統計的意義の欠如(係数:-0.0245, p = 0.469)が確認され、記憶障害の予測的重要性が強化される。
これらの知見はADリスクアセスメントにおける医療史因子の複雑な相互作用を浮き彫りにし、より大きなデータセットと高度な因果モデリング技術を利用したさらなる研究の必要性を浮き彫りにしている。
関連論文リスト
- Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
糖尿病は糖尿病性腎症の発症リスクが高いという特徴を持つ慢性疾患である。
このような合併症やその悪化のリスクを高める個人を早期に同定することは、適切な治療方針を設定する上で非常に重要である。
糖尿病患者に対する臨床関連糸球体濾過率(eGFR)閾値の交差を予測・予測するロジスティック回帰モデルを開発した。
論文 参考訳(メタデータ) (2024-09-10T20:27:00Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Feasibility of Identifying Factors Related to Alzheimer's Disease and
Related Dementia in Real-World Data [56.7069469207376]
537例から10項目で477の危険因子を抽出した。
AD/ADRDの遺伝子検査は、まだ一般的ではなく、構造化EHRと非構造化EHRの両方で文書化されていない。
AD/ADRDリスクファクタに関する継続的な研究を考えると、NLP法による文献マイニングは、私たちの知識マップを自動的に更新するソリューションを提供する。
論文 参考訳(メタデータ) (2024-02-03T18:17:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Self-explainable Graph Neural Network for Alzheimer's Disease And Related Dementias Risk Prediction [5.601973265501243]
アルツハイマー病と認知症(ADRD)は米国で6番目に多い死因である。
機械学習とクレームデータを組み合わせることで、さまざまな医療コード間の追加のリスク要因と相互接続が明らかになる。
論文 参考訳(メタデータ) (2023-09-12T20:12:08Z) - Predicting adverse outcomes following catheter ablation treatment for
atrial fibrillation [2.202746751854349]
AFに対するカテーテルアブレーション治療後の予後予測モデルを構築した。
伝統的および深層生存モデルは、大きな出血、心不全、脳卒中、心停止、死の複合を予測するために訓練された。
論文 参考訳(メタデータ) (2022-11-22T02:55:51Z) - Why Interpretable Causal Inference is Important for High-Stakes Decision
Making for Critically Ill Patients and How To Do It [80.24494623756839]
重症心身障害患者に対する因果関係評価のための枠組みを提案する。
この枠組みは、脳の発作やその他の潜在的に有害な電気的事象が結果に与える影響に適用する。
論文 参考訳(メタデータ) (2022-03-09T18:03:35Z) - Targeted-BEHRT: Deep learning for observational causal inference on
longitudinal electronic health records [1.3192560874022086]
RCTが確立したNull causal associationの因果モデリングについて検討した。
本研究では,観測研究用データセットと変換器ベースモデルであるTargeted BEHRTと2倍のロバストな推定手法を開発した。
本モデルでは,高次元EHRにおけるリスク比推定のベンチマークと比較し,RRの精度の高い推定結果が得られた。
論文 参考訳(メタデータ) (2022-02-07T20:05:05Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Estimation of Causal Effects in the Presence of Unobserved Confounding
in the Alzheimer's Continuum [3.2489082010225494]
アルツハイマー病の病因と効果に関する現在の臨床知識から因果グラフを導出する。
因果効果の識別可能性を示すためには,すべての共同創設者の認識と測定が必要である。
理論的解析では,代用共同設立者が神経解剖学の認知に対する因果的影響を識別できることが証明された。
論文 参考訳(メタデータ) (2020-06-23T16:29:54Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。