Exciton-Polariton Dynamics in Multilayered Materials
- URL: http://arxiv.org/abs/2502.12933v1
- Date: Tue, 18 Feb 2025 15:15:07 GMT
- Title: Exciton-Polariton Dynamics in Multilayered Materials
- Authors: Saeed Rahmanian Koshkaki, Arshath Manjalingal, Logan Blackham, Arkajit Mandal,
- Abstract summary: Coupling excitons with quantized radiation has been shown to enable coherent ballistic transport at room temperature inside optical cavities.
We develop an efficient mixed-quantum-classical approach to simulate the exciton-polariton quantum dynamics.
We find that this enhanced coherence can be traced to a synchronization of phonon fluctuations over multiple layers.
- Score: 0.0
- License:
- Abstract: Coupling excitons with quantized radiation has been shown to enable coherent ballistic transport at room temperature inside optical cavities. Previous theoretical works employ a simple description of the material, depicting it as a single layer placed in the middle of the optical cavity, thereby ignoring the spatial variation of the radiation in the cavity quantization direction. In contrast, in most experiments, the optical cavity is filled with organic molecules or multilayered materials. Here, we develop an efficient mixed-quantum-classical approach, introducing a {\it bright layer} description, to simulate the exciton-polariton quantum dynamics. Our simulations reveal that, for the same Rabi splitting, a multilayer material extends the quantum coherence lifetime and enhances transport compared to a single-layer material. We find that this enhanced coherence can be traced to a synchronization of phonon fluctuations over multiple layers, wherein the collective light-matter coupling in a multilayered material effectively suppresses the phonon-induced dynamical disorder.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Plasmon mediated coherent population oscillations in molecular
aggregates [2.2723634099641004]
coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials.
Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array.
arXiv Detail & Related papers (2023-07-27T08:57:46Z) - Entangled biphoton enhanced double quantum coherence signal as a probe
for cavity polariton correlations in presence of phonon induced dephasing [0.0]
We propose a biphoton entanglement-enhanced multidimensional spectroscopic technique as a probe for the dissipative polariton dynamics in the ultrafast regime.
The proposed technique is shown to be particularly sensitive to inter-manifold polariton coherence between the two and one-excitation subspaces.
It is demonstrated to be able to monitor the dynamical role of cavity-mediated excitonic correlations, and dephasing in the presence of phonon-induced dissipation.
arXiv Detail & Related papers (2022-05-31T11:25:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Plexcitonic quantum light emission from nanoparticle-on-mirror cavities [0.0]
We model a dark-field set-up and explore the photon statistics of the scattered light under grazing laser illumination.
We reveal that the rich plasmonic spectrum of the nanocavity offers unexplored mechanisms for nonclassical light generation.
arXiv Detail & Related papers (2021-12-18T13:22:11Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric
Phase Transition [0.0]
We study a dipolar quantum many-body system embedded in a cavity composed of metal mirrors.
We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors.
Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping.
arXiv Detail & Related papers (2020-03-30T18:00:01Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.